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Summary

Human milk is a unique, complex fluid containing a full range of nutrients and a wealth of
bioactive, non-nutritional components such as antimicrobial and anti-inflammatory factors,
cytokines, digestive enzymes, transport agents, hormones, trophic factors and growth
modulators. This review briefly details these bioactive factors, discusses their putative mode of
action and compares their concentration in human milk with that in cow's milk. Four examples
illustrate the diversity of possible functions: secretory-IgA, amylase, bile-salt stimulated lipase
(BSSL) and the feedback inhibitor of lactation (FIL). The physiological significance of
individual bioactive components is difficult to evaluate, but there is compelling evidence that
breast-feeding has many health benefits for the human infant.

Introduction

Human milk is a unique fluid which contains all the nutrients required by the newborn infant and
a wealth of other bioactive components with non-nutritional properties that may promote infant
health. In this paper, I shall describe the range of bioactive components that have been identified
in human milk and discuss their likely mode of action, drawing on our cross-cultural studies in
England and The Gambia for illustration. Finally, I shall provide a current perspective on the
importance of breast-feeding to infant growth, health and development.

The composition of human milk

The nutrients of human milk provide the substrate materials required for tissue growth,
development and maintenance, such as amino acids, fatty acids, minerals, vitamins, trace
elements and water, and supply the energy for metabolic processes in the form of fat, protein and
carbohydrate (1-3). The specific nutrient composition of human milk is ideally suited to the
needs of the newborn infant. For example, human milk fat contains a comparatively high
proportion of long-chain polyunsaturated fatty acids, such as arachidonic acid (20:4w6) and
docosahexaenoic acid (22:6@3), which are important constituents of brain and neural tissue and
are needed in early life for mental and visual development (4-6). The presence of 8-casein as a
major protein component, and a high proportion of palmitic acid in the central position of
triglyceride molecules, aid digestion and absorption (4, 7, 8). The low sodium content is suited
to the renal handling capabilities of the neonate, and the low energy and protein density is
compatible with the slow growth rate of the human infant (9, 10).

Human milk also contains a wide variety of biologically active components with properties that
are unrelated to nutrition in the classical sense (1-3)  These include antimicrobial and anti-

inflammatory factors, cytokines, digestive enzymes, transport agents, hormones, trophic factors
and growth modulators. Some examples are listed in Table 1.

There is no clear distinction between nutritional and non-nutritional components, or between
different categories of biological activity. Nutrients, such as fats, proteins, carbohydrates and
vitamins, can have additional non-nutritive properties, while non-nutritional components
function as nutrient sources after digestion and absorption. Many substances have multiple roles
and can have synergistic functions with other components. For example, lactoferrin, one of the
major whey proteins of human milk, has bacteriostatic and bacteriocidal activities, is involved in
the transport and absorption of iron, modulates cytokine production, has epidermal-growth
promoting properties, enhances the hydrolytic activity of fat-digesting enzymes, and is
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ultimately degraded in the infant's gastrointestinal tract, presumably releasing amino acids for
absorption (11-16). Certain bioactive factors are generated during the digestion of milk
components in the infant's gastrointestinal tract. For example, B-casomorphins, opioid-like
substances that may influence infant mood and behaviour, are produced by the degradation of
casein, one of the main nutritional proteins (17, 18) and antimicrobial fatty acids and

monoglycerides are produced from human milk fat by the action of bile-salt stimulated lipase
(13,19).

Table 1. Examples of human milk components with non-nutritional properties.

Antimicrobial factors Cytokines/anti-inflammatory Hormones
Secretory-IgA, IgM, IgG Tumour necrosis factor Feedback inhibitor (FIL)
Lactoferrin Interleukins Insulin, cortisol
Lysozyme Interferon-y Prolactin
Fibronectin Prostaglandins Thyroid hormones
Leukocytes o1 -antichymotrypsin Corticosteroids, ACTH
Complement-C3 0] -antitrypsin Oxytocin
Lipids and fatty acids PAF acetyl hydrolase Calcitonin
Antiviral mucins, GAGs Antioxidants PTHrP
Oligosaccharides Erythropoetin

Growth Factors Transporters Digestive enzymes/others
Epidermal (EGF) Lactoferrin (Fe) Amylase
Nerve (NGF) Folate-binder BSS-esterase, BSS-lipase
Insulin-like (IGF) Cobalamin-binder Lipoprotein lipase
Transforming (TGF) IGF-binder Casomorphin
Taurine Thyroxine-binder d-sleep peptides
Polyamines Corticosteroid-binder Nucleotides, DNA, RNA

Although the concentrations of many of these bioactive components are low, several are present
in surprisingly large amounts. Secretory-IgA and lactoferrin, for example are among the four
most abundant proteins of human milk (together with casein and o-lactalbumin) and, in
colostrum, secretory-IgA predominates (2). Similarly, oligosaccharides, principally lactose-N-
tetraose and its monofucosylated derivatives, at a concentration of 3 - 6 g/L represent 5 - 10% of
the carbohydrate fraction of human milk (20).

Table 2. Content of selected bioactive components in mature human and cow's milk (g/L).

Human Cow
Oligosaccharides 5 0.05
Lactoferrin 2 Trace
IgA 1 0.03
1gG 0.01 0.60
Lysozyme 0.50 Trace
Taurine 0.05 0.002
Amylase Present Trace
Bile-salt stimulated lipase Present Absent
Platelet-activating factor acetylhydrolase Present Absent

Data from (2, 21, 22)

The concentration of many of the bioactive components in human milk differs greatly from that
found cow's milk, in addition to the many interspecies differences in nutrient composition (1, 2,
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23). Some examples are given in Table 2. As can be seen, IgG is the main immunoglobulin of
cow's milk rather than secretory-IgA, and lactoferrin is present only in trace amounts. These
differences generally apply to formula milks, since these are largely based on cow's milk,
although some brands do adjust the concentration of certain factors, such as taurine, to more
closely resemble that found in human milk (23).

Functions of bioactive components

The biological activities of the non-nutritional components of breast-milk have been recognised
largely from studies in animal models and in vitro systems and, in most instances, their
physiological significance is poorly understood. The principal site of action may be in the
alimentary canal and related mucosal surfaces of the infant, within the body of the child, or in
the breast of the mother. It is likely that a number of substances represent 'spill-over' or
excretory products from metabolic processes in the mammary secretory cell and have no further
biological function once secreted into milk. The following short sketches illustrate the diversity
of bioactive components and their possible functions in human milk.

Secretory-IgA

Secretory-IgA is the principal immunoglobulin of mucosal secretions in the human. It is a dimer
consisting of two monomers of IgA coupled by secretory component and J-chain, a particularly
stable configuration that is resistant to proteolysis and that can survive in the relatively hostile
environment of mucosal surfaces. Although its concentration declines during lactation from the
high levels present in colostrum and can be influenced by a number of factors including maternal
parity, nutrition, season and geographical region (24, 25), the intake of secretory-IgA by breast-
fed children is considerable (Table 3) (14, 15). Significant amounts of ingested secretory-IgA
survive in the infant's gastrointestinal tract. Secretory-IgA is present in the faeces of breast-fed
infants at levels that are many times greater than those found in the faeces of formula-fed or
weaned children (Table 3) (14, 15). Calculations based on the relationship between faecal
output and defaecation rate suggest that at least 30% of ingested secretory-IgA survives

digestion in the stomach and small intestine, regardless of age and the co-consumption of solid
foods (15).

Table 3. Breast-milk secretory IgA intake and faecal output in Gambian and English children

Age (m) N Intake (mg/d) Output (mg/d) Output (%)2
Gambian
Breast-fed 1.5 5 600 (50) 111 (17) 19 (3
Breast-fed 3 10 530 (50) 28 (3 5@
Breast-fed 17 8 300 (80) 15 (® 4 (3)
Fully weaned 34 7 - 302 -
English
Breast-fed 1.5 10 947 (120) 160 (28) 17 ()
Breast-fed 3 10 842 (98) 94 (17) 11 )
Non-breastfed 1.5 9 - 14 2 -
Non-breastfed 3 6 - 25 (5) -

3 output relative to intake. Faecal outputs of breast-fed children were significantly greater than those of non-
breastfed in the same community. Data from Prentice et al (14, 15).

Young infants have immature defence systems and the production of secretory-IgA in their
mucosal secretions is low. Supply of maternal secretory-IgA via human milk may compensate
for this underdeveloped mucosal defence both in the gastrointestinal tract and, after aspiration, in
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the respiratory tract. Human milk secretory-IgA has antibody activity to a range of enteric and
respiratory pathogens (3), including bacteria (eg Escherichia coli), viruses (eg Haemophilus
influenzae), parasites (eg Gardia lamblia), and fungi (eg Candida albicans). The antibody
specificity of human milk IgA reflects maternal exposure to mucosal infection and does not
mirror the antibody profile in blood (26). Breast-fed children are thus furnished with secretory -

IgA antibodies against the common mucosal pathogens in their own environment to which they
might be exposed.
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Secretory-IgA is present in the urine of breast-fed infants at higher concentrations than in
formula-fed infants of the same age (Figure 1) (27, 28). Since the size of the secretory-IgA
molecule is too large to be filtered by the kidneys, this is unlikely to reflect absorption and
excretion of ingested human milk protein, and suggests that breast-feeding promotes the
development of the infant's immune system. Breast-fed infants also have enhanced immune
responses to vaccination with diphtheria and tetanus toxiods, oral poliovirus and Haemophilus
influenzae type b polysaccharide, and to infection with respiratory syncytial virus (16). The
mechanism of immunostimulation is not known, but may involve anti-idiopathic antibodies

(anti-antibodies), leukocytes, nucleotides or other immunostimulants present in human milk
(16).
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] 25 concentration in percent (SE). ** P<0.001.

IgA C3  Lactoferrin Lysozyme From Prentice et al 1985 (29).
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Secretory-IgA and other antimicrobial factors in human milk, in addition to the putative anti-
microbial role in the gastrointestinal and respiratory tracts of the infant, may also be important in
protecting the lactating breast from infection. Micro-organisms, such as Staphyloccocus aureus
enter the breast via the nipple and cause mastitis when milk stasis provides a conducive
environment for bacterial multiplication and tissue invasion. Antimicrobial factors in milk
bathing the epithelial surfaces of the breast may reduce the likelihood of infection, with obvious
benefits for the mother and the nursing infant. This hypothesis has been little explored but is
supported by a study in The Gambia which demonstrated that women with a history of mastitis
had lower concentrations of IgA, lactoferrin and complement-C3, but not lysozyme, in their non-
mastitic milk than other women in the same community (Figure 2) (29).

Amylase and lipase

The digestive system is immature at birth and develops slowly during early life. The secretion
of pancreatic and salivary amylase, required for starch digestion, is low in the newborn and does
not reach adult levels until 1-2 years of age (30-32). Similarly, young infants have low secretion
of bile acids and pancreatic lipase, required for fat digestion (31, 33, 34). In addition, under-
nourished infants have reduced levels of many components of the digestive system, including
bile salts and digestive enzymes (35-37). This is illustrated for salivary amylase in Figure 3 for
infants in The Gambia where growth faltering is common.
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From Prentice et al 1991 (37).

Human milk contains digestive enzymes that are particularly suited to the conditions prevalent in
the gastrointestinal tract of the young infant and may contribute to the digestion of the milk itself
and of weaning foods. Human milk a-amylase (EC 3.2.1.1) has a broad pH optimum range of
4.5 - 7.5, is relatively resistant to acid conditions and peptic degradation, and remains active in
the infant's small intestine (22). It is plausible, therefore, that this enzyme may promote the
gastric and intestinal digestion of starch in foods co-ingested with human milk (38). Human
milk bile-salt stimulated lipase (EC.3.1.1.3; BSSL), known by a variety of names including milk
digestive lipase and bile-salt stimulated esterase, has wide substrate specificity and will hydolyse
both emulsions and water-soluble substrates (19, 22). BSSL is stable in acid conditions,
survives transit through the stomach, remains active in the infant's gastrointestinal tract, and,
unlike pancreatic lipase, can function at low bile-salt concentrations (39). The products of fat
hydrolysis by BSSL include fatty acids and glycerol. These are more readily absorbed than the
hydrolytic products of pancreatic lipase (19), and several have antimicrobial properties (40, 41).

BSSL may also be important in the digestion of retinyl esters, the main source of vitamin A in
human milk (19, 39).
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Human milk contains appreciable activities of amylase and BSSL throughout lactation (22, 42,
43). Colostrum and early milk are richer in amylase, but lower in BSSL, than mature milk (22).
There are marked, consistent differences in enzyme activities between milks from different
mothers, which result in a wide range of daily intakes by the infants (22, 42, 43). The
differences in amylase activities and intakes are evident in Table 4 which gives measured values
for four typical Gambian mothers and their babies. There is evidence that the activities of these
enzymes may be reduced by maternal malnutrition and high parity (22, 42).

Table 4. Activity and intake of breast-milk amylase in 4 Gambian mothers and their infants

Amylase activity Breast-milk intake Amylase intake
(IU/mL) (mL/d) Iu/d)
Subject A 2.59 524 1357
Subject B 1.34 832 1115
Subject C 0.74 931 689

Subject D 0.11 829 91

Amylase activity was measured by hydrolysis of maitotetraose at 37°C; breast-milk intake by deuterium oxide
dilution. The infants were 1-3 months old. Data from Dewit et al (42).

The importance of human milk enzymes to digestion and absorption by breast-fed infants is not
established. There is evidence that BSSL improves fat absorption in the neonate, especially
those born prematurely (44, 45). However, recent studies in our laboratory using stable-isotope
labelled foods have not been able to demonstrate enhanced fat and starch digestion among older
Gambian infants as a result of co-consumption of breast-milk (46, 47).

Feedback inhibitor of lactation (FIL)

Breast-milk output varies to match the demands of the nursing infant (48-50). The frequency
and completeness of milk removal are important local signals in the regulation of milk
production, independent of systemic galactopoetic hormones (51). This has been elegantly
demonstrated by experiments in goats, which showed that an increased frequency of milking,
from twice to three times daily, in only one udder produced increased milk yields in that gland
only (52). The local, rather than systemic nature of this control, has also been illustrated in
humans (49, 50) and is supported by the observation that the daily milk output of women with
one dysfunctioning breast is similar to that of women with two healthy breasts (53).

Recent studies have pointed to the involvement of an autocrine factor in the local control of milk
production (51). Initially identified in caprine milk, the feedback inhibitor of lactation (FIL) has
also been detected in human milk (54). FIL is a small, acidic whey protein, molecular mass 6-30
kD, that inhibits lactose and casein synthesis in a rabbit explant bioassay. The mechanism of
autocrine regulation is not fully understood, but studies in goats suggests that FIL is
continuously secreted into milk and accumulates in the alveolar lumen between feeds (51). The
increased luminal concentration of FIL inhibits milk synthesis in the secretory cell. In this way,
FIL produces a decrease in milk synthesis rate as the gland fills and its removal with milk during
nursing stimulates milk production (51).

Health benefits of breast-feeding

There is compelling evidence that breast-feeding protects the young infant against infectious
diseases (3, 55). The effect is particularly strong for children from poor, underprivileged
families in the developing world, but there is increasing evidence that breast-feeding reduces the
incidence of gastrointestinal and respiratory infections even in affluent communities (3, 56-58).
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This protective effect diminishes as the child grows older and after the introduction of solid
foods or other milks (56, 58). However, in poorly nourished children, continued partial breast-
feeding reduces the severity of infections and the risk of dying even in older infants and toddlers
(55, 59). The effect of breast-feeding on maternal fertility and birth spacing, is also a major
factor in reducing infant mortality in developing countries (60).

Benefits for child health are also evident in children many years after breast-feeding has stopped.
Advantages, in terms of mental development and reduced risk of chronic childhood diseases,
such as Crohn's disease, lymphoma, allergic disease and juvenile-onset diabetes mellitus, have
been reported for older children who were breast-fed in infancy (3, 61-65). Investigations of the
impact of early life nutrition on adult degenerative diseases indicate a reduced risk of death from
ischaemic heart disease in men who were breast-fed in infancy except for those still being
breast-fed at one year (66). This effect may be mediated by effects on infant weight gain, and
alterations in cholesterol metabolism (66-69).

It is not clear whether the advantages of breast-feeding are a direct result of the ingestion of
human milk, with its unique mix of nutritional and non-nutritional components, or are a
reflection of the many social factors that affect a mother's decision to breast-feed, such as
educational attainment, socioeconomic standing, housing and family background. It is also
possible that breast-feeding may act passively by reducing exposure at an early age to certain
substances present in alternative forms of nutrition (3, 70). Studies seeking to evaluate the
consequences of breast-feeding are highly prone to confounding (71), and it is, therefore,
virtually impossible to disentangle the multitude of interacting factors in order to determine the
importance of individual bioactive components of human milk to infant health. However, the
current evidence is that, taken together, there are major benefits in encouraging all mothers to
exclusively breast-feed for the first 3-6 months of an infant's life, followed by the gradual
introduction of solid foods (55, 72). In addition, there are many advantages of continuing
breast-feeding for 1-2 years, as part of a mixed diet, particularly for mothers living in poor
environments (55).
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