
Free radical chemistry: An introduction
A free radical is any chemical species capable of independent
existence and possessing one or more unpaired electron, an
unpaired electron being one that is alone in an orbital. Radi-
cals, often denoted by the insertion of the superscript dot (.),
are generally less stable than non-radicals, although their
reactivities vary. The rate and selectivity of reactions of this
type depends on high concentrations of the radicals, delocal-
ization of the single electron of the radical (thus increasing its
life time), and on the absence of weak bonds in any other
molecules present with which the radical could interact. Most
biological molecules, however, are non-radicals containing
only paired electrons. Much of the work in physical and
organic chemistry1–3 relating to free radicals gathered
momentum following the demonstration of the existence of
the triphenylmethyl radical (Ph3C.).4 Gerschman et al pro-
posed ‘that oxygen poisoning and radiation injury have at
least one common basis of action, possibly the formation of
oxidizing free radicals’.5 This pioneering idea soon began to
capture the imagination of scientists. In the early 1960s,
superoxide was found to be associated with a number of
enzymes, including xanthine oxidase. In 1968 it was discov-
ered that superoxide was secreted into solution, allowing
superoxide to mediate cellular toxicity.6–7

From an environmental perspective, photochemical
reactions involving reactive oxygen species are attractive for
cleaning up pollution given that many ‘self-repair’ processes
in the atmosphere and natural waters are driven by light.8

Because electronically excited states of molecules may be
both better oxidizing and/or reducing agents compared with
their ground state counterparts, electron transfer processes
can generate highly reactive species, which can be used to
chemically decompose a pollutant into harmless end
products.

Suggestions that oxidative stress play a role in human
diseases have led to the proposal that health might be
improved by increased dietary intake of antioxidants.9–13

Drugs (prescription only medicines and over the counter
medicines) with antioxidant indications, have a functional
relationship between health status and disease state.14–15The
role that food and drugs might play in the management of
health is shown in Fig. 1.
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Figure 1. Functional relationships between health status and disease
state and the role that food and drugs might play in the management of
health.



Reactive oxygen species
Free radicals of importance in living organisms include
hydroxyl (OH.), superoxide (O2.–), nitric oxide (NO.) and
peroxyl (RO2

.). Peroxynitrite (ONOO–), hypochlorous acid
(HOCl), hydrogen peroxide (H2O2), singlet oxygen1∆g (often
written as 1O2) and ozone (O3) are not free radicals but can
easily lead to free radical reactions in living organisms. The
term ‘reactive oxygen species’ (ROS) is often used to include
both the radical and non-radical species. Oxidative stress is
the term referring to the imbalance between the generation of
reactive oxygen species and the activity of the antioxidant
defenses. Severe oxidative stress can cause cell damage and
death. It has been implicated in numerous human diseases
including cancer, atherosclerosis, iron overload, rheumatoid
arthritis, Parkinson’s disease, motor neurone disease, dia-
betes, malaria, and in HIV infection and AIDS.16–19 The
importance of oxidative stress injury is dependent on the
molecular target, the severity of the stress and the mechanism
by which the oxidative stress is imposed, that is, drug
induced, Fenton chemistry, trauma, enzyme activation (e.g.,
nitric oxide synthase activity) and the cellular transduction
mechanisms which may affect the expression of certain pro-
teins including the DNA repair enzymes.20,21Brief comments
on nitric oxide, peroxyl radicals, hydroxyl radicals and
hypochlorous acid will be made to illustrate the complexity
of the mechanism of reactions involving ROS.

Nitric oxide
Nitric oxide plays a significant role in the regulation of cell
function and tissue viability: this includes the recognized
ability to mediate signal transduction via stimulation of
guanylate cyclase-mediated cGMP synthesis.22–27The role of
NO. has been demonstrated with relation to malaria, whereby
NO. appears to be partially involved in resistance to malaria
infection, in cardiovascular disease, acute inflammation, can-
cer, neurodegenerative diseases and diabetes.23 The reaction
between NO. and O2

.– leads to DNA oxidative damage due to
the formation of peroxynitrite, which may have OH.-like
potential leading to the formation of nitroguanine and other
loose products.28–32 It has been suggested that peroxynitrite
formed by the reaction between NO. and O2

.– mediates NO.

dependent toxicity. In addition to the DNA base nitration
mentioned above, ONOO– potentiates endothelial-dependent
activation of guanylate cyclase, bactericidal activity, try-
panocidal activity, conversion of low density lipoprotein
(LDL) to a form that may be recognized by the macrophage
scavenger receptor, induction of peroxidation of lipids, oxi-
dation of methionine and SH residues in proteins, depletion
of antioxidants (e.g. ascorbate, glutathione), nitration of tyro-
sine residues and inactivation of α1-antiproteinase (a major
inhibitor of serine proteases in vivo). 

Reaction of peroxynitrite with antioxidants
The addition of ONOO– to biological fluids leads to the nitra-
tion of tyrosine residues: the presence of these appears to be
a ‘marker’ of ONOO–-dependent damage in vivo. Peroxyni-
trite inactivates α1-antiproteinase, the major inhibitor of ser-
ine proteases such as elastase, in human body fluids. Thus,
ONOO– generation in vivo can facilitate both oxidative and
proteolytic damage.22,38 The protein α1-antiproteinase
(α1AP) is an especially sensitive target of damage, so the

antioxidant’s protective action might be even greater in vivo
depending, of course, on the precise location of the anti-
oxidant in relation to the site of ONOO– generation.
Although inactivation of α1AP may involve a direct attack on
methionine residues by ONOO–, nitration of tyrosine by
ONOO– is a complex reaction that may involve such species
as NO2

., NO2
+ and CO2

. Activated human polymorpho-
nuclear neutrophils have been shown to convert NO– into
NO2Cl and .NO2 through myeloperoxidase pathway, a reac-
tion that may contribute to cellular dysfunction.39 The reac-
tion of peroxynitrite with tyrosine (in proteins) and phenolic
‘antioxidant’ compounds and its inactivation of the prote-
olytic inhibitor α1-antiproteinase are good assays for deter-
mining putative antioxidant activity.22,33–37,40–42

Peroxyl radicals
These are formed during lipid oxidation chain reactions, such
as the oxidation of polyunsaturated fats resulting in deterio-
ration of lipid-containing foods. Lipid peroxidation may be
initiated by any species that has sufficient reactivity to
abstract hydrogen from a polyunsaturated fatty acid side
chain (e.g. those of arachidonic acid and linolenic acid) in
membrane lipids. End-products of lipid peroxidation could
also have profound effects on vascular function because of
their ability to mimic or antagonize the actions of some of the
stereospecific products formed by cyclooxygenase and
lipoxygenase enzymes. For example, the F2-isoprostanes are
generated by the peroxidation of arachidonic acid via the
generation of peroxyl radical isomers which undergo endo-
cyclization to prostaglandin-like compounds. Their forma-
tion in vivo appears to be enhanced under conditions of
oxidative stress, such as smoking or exposure to xenobiotics,
and under pathological conditions associated with inflamma-
tion. The mechanism of LDL oxidation possesses the general
characteristics of the free radical reaction of lipid peroxida-
tion.43–45

Hypochlorous acid
Hypochlorous acid is produced by the neutrophil-derived
enzyme myeloperoxidase at sites of inflammation and when
activated neutrophils infiltrate reoxygenated tissue. The
enzyme oxidizes chloride (Cl–) ions in the presence of
H2O2.46–49 Hypochlorous acid is a potent chlorinating and
oxidizing agent.50 Cholesterol forms chlorohydrins that
could disrupt cell membranes, leading to cell lysis and
death.51 Cholesterol chlorohydrins may become potential
biomarkers for oxidative damage associated with neu-
trophil/monocyte activation. Hypochlorous acid can attack
many other biological molecules. For example, the prote-
olytic inhibitor α1AP is the major inhibitor in human plasma
of proteolytic enzymes such as elastase. The α1AP protein
accounts for approximately 90% of the elastase-inhibitory
capacity of the human serum.52 Thus, its inactivation by
HOCl might greatly potentiate tissue damage because elas-
tase is also released from activated neutrophils. Hypochlor-
ous acid attacks primary amines and sulfhydryl (SH) groups
in proteins, and chlorinates purine bases in DNA.50,53,54

Physiological levels of HOCl can cause protein fragmenta-
tion of collagenase and prevent collagen gelation.55 Reac-
tions of HOCl/OCl– react with endogenous amines to form
N-chloramines, which exhibit a lower oxidizing potential
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than HOCl.50,56 Hypochlorous acid reacts with substituted
aryl amine-aniline, 1-naphthylamine and 1-naphthol to form
long-lived products that bind DNA and that are suggested to
be genotoxic to human cells57

Reactions of antioxidants with hypochlorous acid
Assays for hypochlorous acid that could be performed with
ease to test the ability of an antioxidant to react with the
molecule include the elastase assay;58,59 assay with cata-
lase;60 inhibition of taurine-chloramine formation;61 and the
oxidation of 5-thio-2-nitrobenzoic acid (TNB).62 An anti-
oxidant protecting against damage by HOCl might do so not
only by scavenging HOCl but also by inhibiting myeloper-
oxidase. Thiols that are good scavengers of HOCl might also
act as competing substrates for myeloperoxidase enzyme and
therefore slow down HOCl formation.63–65Interestingly, sev-
eral phenolic compounds including flavonoids react quickly
with HOCl and can protect α1-antiproteinase and other sus-
ceptible targets against damage in vitro.66,67

Hydroxyl radicals
The hydroxyl radical (OH.) is a highly reactive oxygen-
centred radical with an estimated half life in cells of only 10–9

s. One feature of the hydroxyl radical is that it begets another
radical when it reacts with a molecule: the result is the for-
mation of another radical species. The resulting species
usually has lower reactivity than the OH.. Hydroxyl radical
attacks all proteins, DNA, polyunsaturated fatty acids in
membranes and almost any biological molecule it touches. In
the case of OH. generation by Fenton-type chemistry,68,69the
extent of OH. formation is largely determined by the avail-
ability and location of the metal ion catalyst.

Copper ions are more reactive in causing DNA damage in
the presence of H2O2 compared with equimolar iron ions in
vitro.70 Metal-dependent carcinogenesis is widely discussed
in the literature.71 Iron ions are absorbed from the gut and
transported to iron requiring cells by the protein transferrin.
Iron specifically bound to transferrin does not participate in
free radical reactions.72 Excess iron is stored as ferritin and
haemosiderin in an attempt to keep the iron pool as small as
possible. Hydroxyl radical generation can take place when
the homeostasis is altered. For example, copper and iron ions
released into perfusates can cause ischemia–reperfusion
injury.73 Tissue injury can itself cause ROS generation (e.g.
by causing activation of phagocytes or releasing transition
metal ions from damaged cells), which may, or may not
depending on the situation, contribute to a worsening of the
injury. Traumatic brain injury and stroke may involve a
postinjury stimulation of iron ion-dependent free radical
reactions. Parkinson’s disease is caused by the death of cells
in the substantia nigra. Lysis of dead cells could cause iron
ion release. Thus, patients with Parkinson’s disease may be
under oxidative stress and free radical reactions are probably
contributing to the degeneration of the substantia nigra.74

Data from the assessment of oxidative DNA damage in the
brain have shown that DNA damage is higher in the tempo-
ral lobe compared with other brain regions in Alzheimer’s
disease.75

Protection against ROS-induced damage
The phagocytes (i.e. neutrophils, monocytes, macrophages,
eosinophils) provide protection against foreign organisms.
They generate O2.–, H2O2 and, in the case of neutrophils,
HOCl as one of their mechanisms for killing foreign organ-
isms.46,47This essential defence mechanism, however, can go
wrong; several diseases, such as rheumatoid arthritis and
inflammatory bowel disease, are accompanied by excessive
phagocyte activation and resulting tissue damage, to which
ROS contribute. The interrelationship between ROS and
antioxidants in humans is very complex.15 Of the known anti-
oxidant enzymes, superoxide dismutases (SOD)7,76 remove
the superoxide radical (O2.–) by accelerating its conversion to
H2O2. Human cells have a SOD enzyme which contains man-
ganese at its active site (MnSOD) in the mitochondria. A
SOD with copper and zinc at the active site (Cu,Zn-SOD) is
also present but largely in the cytosol. Mutations to the SOD-
1 have been associated with the pathology of the degenera-
tive disease amyotrophic lateral sclerosis (ALS).77 Catalases
in the peroxisomes convert H2O2 into water and O2 and help
to dispose of H2O2 generated by the action of oxidase
enzymes located in these organelles. However, the most
important H2O2-removing enzymes in human cells are glu-
tathione peroxidases (GSHPX).78 These enzymes require
selenium, as selenocysteine at the active site, for their action.
Glutathione peroxidases enzymes remove H2O2 by using it to
oxidize reduced glutathione (GSH) to oxidized glutathione
(GSSG). Glutathione reductase, an FAD-containing enzyme,
regenerates GSH from GSSG, with NADPH as a source of
reducing power. A variety of radical-scavenging antioxidants,
including GSH, uric acid, α-tocopherol (vitamin E)  (Fig. 2)
and ascorbic acid (vitamin C) exist. α-Tocopherol delays
lipid peroxidation by reacting with chain-propagating per-
oxyl radicals faster than these radicals can react with proteins
or fatty acid side-chains.79 In theory, β-carotene  (Fig. 3) has
remarkable antioxidant chemistry, a function that has been
difficult to demonstrate in a beneficial manner in biological
systems. Excellent accounts on vitamin E and β-carotene
may be found in several reports.79–84 Thus, scavenging
enzymes and antioxidants can inhibit free radical production
by chelating the transition metal catalysts, breaking chain
reactions, reducing concentrations of ROS, and by scaveng-
ing initiating radicals.

That ascorbate (vitamin C) may serve as an important
antioxidant in vivo is widely claimed.85 Ascorbic acid and its
derivatives have useful functions in the food industry, where
they are used during processing to enhance food stability.86

The ability of ascorbic acid to show antioxidant properties is
related to the fact that the dehydroascorbate radical is less
reactive than are many of the radicals that can be scavenged
by ascorbate.87 Intracellular enzymic systems exist in vivo to
reduce this radical back to ascorbate using NADH (the
NADH-semidehydroascorbate reductase enzyme) or GSH
(the dehydroascorbate reductase enzyme) as sources of
reducing power. Ascorbic acid is often rapidly depleted in
human extracellular fluids under conditions of oxidative
stress.88

Evaluating the role of free radicals in disease pathology
and establishing a logical basis for the therapeutic use of anti-
oxidants requires the use of validated biomarkers (Table 1).
Numerous antioxidant supplementation studies for the
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primary prevention of chronic diseases have been under-
taken. In each case, the principal endpoint has been ‘inci-
dence’ of the respective disease, that is, incidence of cancer
or cardiovascular disease. In a departure from this, the extent
of oxidative DNA damage in Scottish men aged between 50
and 59 years was investigated by Duthie et al.89 Their result
suggests that long-term antioxidant supplementation can
decrease both endogenous and exogenous oxidative DNA
damage in lymphocytes. Future supplementation studies in
order to evaluate the pharmacology of antioxidants (drug-
derived or plant-derived antioxidants) should balance the use
of in vivo biomarkers with the choice of population, formu-
lation and dose of antioxidants being used, the expected out-
come variables, and the pathologic viables. Figure 4 suggests
one such rationale. The global direction would be for food
and drug antioxidants to be evaluated for their inherent prop-
erties usingin vitro models. Assessment of their protective
effects in human health and disease should then consider how
the steady state levels of markers of oxidative damage are
affected by the antioxidants.

Measurement of oxidative DNA damage
Oxidative damage to DNA appears to occur continuously in
vivo, in that low levels (presumably a ‘steady state’ balance
between DNA damage and repair) have been detected in
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Figure 2. Chemical structure of tocopherols.

Figure 3. Typical carotenoid structures, including xanthophylls (oxy-
genated carotenoids) and carotenes (hydrocarbons).

Table 1.Measurement of oxidative damage in humans.

There are several indicators of the extent of oxidative damage in
humans. Some of the most common include measuring:

Oxidative DNA damage
GC/MS/SIM detection of oxidized base products
HPLC-based assays for oxidized base products
Single gel electrophoresis assay (Comet assay)

Oxidative damage to lipids
Measurement of conjugated dienes
Measurement of isoprostanes
Measurement of hydroperoxides
Measurement of thiobarbituric acid reactive materials by HPLC

Assessment of the levels of antioxidant enzymes
Catalase, superoxide dismutase and glutathione peroxidase

Assessment of protein damage
Steady state protein damage can be quantified in terms of the
numbers of protein carbonyls and modified tyrosine residues.
Total ongoing (repaired) protein damage can be indicated by
the concentration of modified tyrosines and fluorescent
bityrosines in the urine.

Assessment of levels of low molecular weight antioxidants and
vitamins

Uric acid/allantoin, glutathione, flavonoids, vitamin E and C,
β-carotene



DNA isolated from human cells and tissues.32,90–92 Back-
ground radiation may be one source but radiation-generated
OH. is formed over the whole cell and only a small fraction
hits DNA.93 Other potential sources of OH. or OH.-like
species include the decomposition of ONOO–, the reaction of
O2

.– with HOCl, and HOCl itself, which can attack DNA
bases generating chlorinated products. The greatest interest
has been in reactions of transition metal ions with H2O2 as a
source of OH..70,71,94–96Oxidative stress and cell death can
liberate metal ions from their normal sequestration sites and
they might then bind to DNA, a powerful metal ion chelator.
Several DNA base damage products are excreted in human
urine, including the nucleoside 8-hydroxydeoxyguanosine
(8-OHdG), 8-hydroxyadenine and 7-methyl-8-hydroxy-
guanine, but the one most exploited is 8-OHdG, which is
usually measured by a method involving HPLC with electro-
chemical detection. The level of 8-OHdG in urine is proba-
bly not affected by the diet since nucleosides are not
absorbed from the gut. It is also possible that some or all of
the 8-OHdG excreted in urine may arise not from DNA but
from deoxyGTP (dGTP) in the DNA precursor pool of
nucleotides. An enzyme has been described which hydro-
lyzes dGTP containing oxidized guanine to prevent its incor-
poration into DNA.97,98 The need to validate measurements
of DNA base products as markers of oxidative damage in
vivo is critical.99

Lipid oxidation and its measurement
Lipid peroxidation is important in vivoand for the stability of
processed foods. It contributes to the development of cardio-
vascular diseases such as pre-eclampsia and atherosclerosis,
and the end-products of this process, particularly cytotoxic
aldehydes such as malondialdehyde (MDA) and 4-hydroxy-
nonenal (HNE), can cause damage to proteins and to DNA.
Peroxidation causes impairment of biological membrane
functioning: for example, it decreases fluidity, inactivates
membrane bound enzymes and receptors, and it may change
non-specific calcium ion permeability.100,101The more unsat-
urated a fatty acid side-chain, the greater its propensity to
undergo lipid peroxidation.

The ability to measure levels of isoprostanes and
hydroxyeicosatetraenoic acids (HETE) represent important
developments in attempts to measure clinically relevant
oxidative lipid damage. The hydroperoxides HETE and iso-
prostanes are biologically active. Hydroxyeicosatetraenoic
acids are chemotactic for neutrophils and have been shown to
facilitate calcium uptake and protein kinase C mobiliza-
tion.102,103The 12-HETE are involved in adrenocorticotropin
and parathyroid secretion, modulation of mitogenic pro-
cesses and lymphocyte function,104–106while the 15-HETE
may inhibit neutrophil migration across cytokine-activated
endothelium.107

Isoprostanes are a series of prostaglandin-like compounds
formed during peroxidation of arachidonic acid.108 Similar
products are probably formed from other polyunsaturated
fatty acids (PUFA) as they are structurally similar to
prostaglandin F2α, the compounds are collectively referred to
as F2-isoprostanes. The majority of plasma isoprostanes are
esterified to phospholipids, but some are ‘free’. One of the
isoprostanes, 8-isoPGF2α is a powerful renal vasoconstrictor
which is known to cause decreased kidney blood flow and
glomerular filtration rate at low nanomolar concentrations.108

Elevated circulating concentrations of F2-isoprostanes may
contribute to the pathology of hepatorenal syndrome, an
almost uniformly fatal disorder characterized by the develop-
ment of kidney failure in patients with severe liver disease.
Urinary excretion of isoprostanes is elevated in patients with
scleroderma and in smokers. Isoprostanes and their metabo-
lites can be measured in human urine and this may prove to
be a valuable assay of whole body lipid peroxidation if a con-
founding effect of diet can be ruled out. These developments
are discussed in a number of studies.43,108–114

In a study by Bachi et al., the levels of 8-epi-PGF2aexcre-
tion in non-smokers tended to be constant, with relatively
low interindividual variations, suggesting that individual
‘normal level’ in the absence of oxidant injury such as smok-
ing may also result from physiological or biochemical
event(s) occurring at a constant rate with by-production of
free radicals and oxidants (see Fig. 5).115 Given that basal 8-
epi-PGF2a production in vivomay result from lipid peroxida-
tion triggered by a chain of chemical events starting with the
reaction of endothelium-derived peroxynitrite, measurement
of isoprostanes may provide a supperior novel approach to
assessing lipid peroxidation in vivo. In Fig. 5 we can imagine
that the plots for non-smokers and smokers represent normal
and disease states. The efficacy of antioxidants in helping to
maintain the baseline ‘healthy’ levels of endogenous oxida-
tive lipid damage could easily be monitored by comparing
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the rise and fall of the levels of isoprotanes. Alternatively,
reducing the tendency of a given disease condition to worsen
and bring patients to the state of normal health is funda-
mental in disease management (Fig. 1). Thus, strategies to
reduce observed increases in isoprostane level can be used to
monitor the efficacy of antioxidant prophylactic agents. Cur-
rently, the lack of validated assays for isoprostane other than
those that make use of mass spectrometry has greatly cur-
tailed the general use of this approach to assess oxidant
injury. There is, therefore, a need to develop an inexpensive
assay for isoprostanes. The availability of a simpler (e.g.
immunoassays) and more reliable method for the measure-
ment of isoprostanes could provide new and exciting insights
into the role of free radicals and lipid peroxidation in human
diseases.

Oxidation of LDL is a free-radical-mediated process that
results in numerous structural and functional changes. The
initiation of LDL oxidation occurs by the peroxidation of the
polyunsaturated fatty acids (PUFA) in LDL. Oxidation of
LDL is initiated by hydrogen abstraction from a double bond
in PUFA, followed by molecular rearrangement that leads to
the formation of conjugated dienes (CD). During this
process, the rate of oxidation is dependent on endogenous
antioxidants in LDL, accounting for the lag phase of oxida-
tion. The lag phase is followed by a rapid propagation phase
that occurs after depletion of endogenous antioxidants and
involves abstraction of another H. by a PUFA-peroxyl radical
(LOO.) from another PUFA, resulting in the formation of
lipid peroxides.44,45 The propagation phase is followed by a
decomposition or degradation phase in which there is cleav-
age of double bonds, resulting in the formation of aldhydes,
such as malondialdehyde (MDA), 4-hydroxynonenal (HNE)
and hexanal, that can crosslink with amino groups on apo B-
100. Monoclonal antibodies for the detection of 4-hydroxy-
nonenal modified proteins, which is selective for HNE bound
to histidine with some cross reaction to HNE bound to lysine
and cysteine, have been described by the late Hermann Ester-
bauer and his group at the University of Graz, Austria (Waeg
et al.116). Changes in the protein moiety of LDL also occur
during oxidation.117 Oxidation is followed by an increase in
the negative charge on the LDL, possibly due to derivatiza-
tion of positively charged amino groups through the forma-
tion of Schiff base with aldehydes. Furthermore, following
oxidation the apo-B protein undergoes oxidative scission

leading to fragmentation. Oxidized LDL inhibits endo-
thelium derived relaxing factor (EDRF) and may activate T-
lymphocytes in atherosclerotic lesions and stimulate
proliferation of smooth muscle cells. The induction of the
expression of the gene coding for the A-chain of platelet
derived growth factor may cause disturbances of eicosanoid
homeostasis and aggregation of platelets in support of the
atherogenicity of oxidized LDL.118,119

Protein oxidation and its measurement
Oxidative damage to proteins in vivomay affect the function
of receptors, enzymes, transport proteins, etc., and perhaps
generate new antigens that provoke immune responses. Prod-
ucts of oxidative protein damage can contribute to secondary
damage to other biomolecules, for example, inactivation of
DNA repair enzymes and loss of fidelity of DNA polymer-
ases in replicating DNA. The chemical reactions resulting
from attack of ROS upon proteins are complex. Free radical
attack upon proteins generates radicals from amino acid
residues, and electrons can be transferred between different
amino acids. The levels of any one or, preferably, of more
than one of these products in proteins could in principle be
used to assess the balance between oxidative protein damage
and the repair of, or more likely the hydrolytic removal of,
damaged proteins. The molecular biology of free radical
attack on proteins and its implications in certain pathology is
extensively reviewed in Dean et al.120 and Fu et al.121

Characterization of antioxidant actions
An antioxidant may be defined in a number of ways. For
example, as a substance which, when present at low concen-
trations compared with those of an oxidizable substrate, such
as fats, proteins, carbohydrates or DNA, significantly delays
or prevents the oxidation of the substrate.122 Acidic com-
pounds (including phenols) usable in foods which can readily
donate an electron or a hydrogen atom to a peroxyl or alkoxy
radical to terminate a lipid peroxidation chain reaction or to
regenerate a phenolic compound, or which can effectively
chelate a pro-oxidant transition metal,123,124 are also anti-
oxidants. A pro-oxidant is a chemical species capable of
increasing the oxidative burden of a system by increasing the
synthesis of reactive oxygen, nitrogen, chlorine and sulfur
species and by modulating the gene expression of the anti-
oxidant enzymes. A compound might exert antioxidant
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Figure 5. Levels of 8-epiPGF2α in smokers.
Reprinted with permission from reference 116,
Elsevier Science Inc.



actions in vivoor in food by inhibiting generation of ROS, or
by directly scavenging free radicals. Additionally, in vivo an
antioxidant might act by raising the levels of endogenous
antioxidant defenses (e.g. by upregulating expression of the
genes encoding SOD, catalase or glutathione peroxidase).

It is increasingly being suggested that natural anti-
oxidants from plants may be applied in the preservation of
food materials. Simple experiments (Fig. 6) can be per-
formed to examine direct antioxidant ability in vitro and to
test for possible pro-oxidant effects on different molecular
targets. This ‘screening’ approach can be used to rule out
direct antioxidant activity in vivo: a compound that is poorly
effective in vitro will not be any better in vivo. Measurements
of lipid peroxidation should be the first line of tests to estab-
lish the potential antioxidant action of dietary antioxidant
compounds. An antioxidant index based on the ability to
scavenge peroxyl radicals may then provide support for anti-
oxidant efficacy in in vitro systems.124–126Antioxidants that
protect lipids against free radical damage may actually accel-
erate damage to other molecules such as DNA, carbohydrates
and proteins under certain conditions. This points to the need
to examine suggested antioxidant activity or the activity of
components with a proposed ‘antioxidant cocktail’ using
assays involving a variety of substrates. The deoxyribose
assay allows the determination of rate constants of reactions
with OH. radicals, the assessment of abilities to exert pro-
oxidant action, and the assessment of abilities to chelate
metal iron. Assays involving DNA damage have also been
developed for assessing pro-oxidant actions. These assays
have unique features. The positive pro-oxidant actions in the
deoxyribose system rely on the ability of the compounds to
interact with metal ions (i.e. to promote reduction of Fe3+ to
Fe2+ chelates) and hence, to promote OH. formation in the
presence of H2O2. The assays involving DNA rely on the
ability to reduce the metal ions in the iron-bleomycin-DNA
or the copper-1,10-phenanthroline-DNA complex.124

During in vitro testing, it is essential to examine the
action of a compound over a concentration range that is rele-
vant to its intended use. For example, if the compound is pre-
sent in vivo at low concentrations (less than 1 µmol), its
ability to inhibit lipid peroxidation only at high millimolar
concentrations is irrelevant unless there is good reason to
suspect that it concentrates at a particular site in vivo. The
same is true if the compound exerts a pro-oxidant effect at
high concentrations in vitro and is only present at low con-
centrations and exerts antioxidant action to different species.

Future perspective
When endogenous antioxidant defenses are inadequate for
the purpose of scavenging the ROS completely, ongoing
oxidative damage to DNA, lipids, proteins and other mole-
cules can be demonstrated. Although ongoing oxidative dam-
age in vivo is implicated in the pathology of several human
diseases, it is important to appreciate that they may not be the
primary cause of these diseases. Although diet-derived and
drug-derived antioxidants may be particularly important in
protecting against a number of human diseases, and assum-
ing that the active components become bioavailable, the
physiological relevance of the compounds, their ability to
upregulate defense antioxidants and to modulate gene
expression (with respect to synthesis of DNA repair enzymes),
affect the cellular transduction mechanisms. With respect to
free radical research, how the in vivo markers of oxidative
stress are affected by antioxidants still needs to be fully
evaluated. 

In order to exploit the significance of antioxidants, it is
critical to understand the features of the molecular compo-
nents of free radical biology and the interrelationships of
these components in mediating tissue injury. Free radicals
and oxidants are part of normal human metabolism but when
produced in excess, they can cause tissue injury. Tissue
injury can itself cause ROS generation, for example, by caus-
ing activation of phagocytes or releasing transition metal ions
from damaged cells, which may (or may not, depending on
the situation) contribute to a worsening of the injury. One
could argue that careful use of a range of antioxidants, plant-
extracts, plant-derived antioxidants, drug-derived anti-
oxidants, and/or antioxidant vitamins (β-carotene, vitamins E
and C) supplements, combined with new methods for mea-
suring oxidant generation in humans, would enable the
unequivocal delineation of the exact contribution of ROS
generation to disease pathology and to the maintenance of
health.9 Although the global recommendation of the exact
amount of vitamin E, C, β-carotene and/or flavonoids
derived from the human diet (rich in fruits and vegetable or
from supplements) required for optimal health must await the
results of scientific endeavours directed to the issues. In this
context, the ultimate goal in the 21st century is to maintain
health through nutrition.
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Figure 6. Experimental approaches for the
characterization of potential antioxidant and
pro-oxidant actions.
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