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ABSTRACT  

Background and Objectives: Previous studies have reported there were associations with 

ovarian function for dietary factors, metabolic factors and gut microbiota. However, it is not 

clear whether causal associations exist. We aimed to explore the causal relationship of these 

factors with risk of primary ovarian failure (POF). Methods and Study Design: Two-sample 

Mendelian randomization (MR) analysis was performed to genetically predict the causal 

effects of dietary and metabolic factors and gut microbiota on POF. The inverse variance 

weighted (IVW) method was used as the primary statistical method. A series of sensitivity 

analyses, including weighted median, MR-Egger, simple mode, weighted mode methods, and 

leave-one-out analysis, were conducted to assess the robustness of the MR analysis results. 

Results: IVW analysis revealed that cigarettes smoked per day, coffee intake and cooked 

vegetable intake were not causally correlated with POF at the genetic level. However, there 

were associations with POF for fresh fruit intake, BMI, Eubacterium (hallii group), 

Eubacterium (ventriosum group), Adlercreutzia, Intestinibacter, Lachnospiraceae (UCG008), 

and Terrisporobacter. These findings were robust according to extensive sensitivity analyses. 

Conclusions: This study identified several dietary and metabolic factors and gut microbiota 

taxa that may be causally implicated in POF, which may provide potential therapeutic targets 

for POF. 

 

Key Words: primary ovarian failure, dietary factors, metabolic factors, gut microbiota, 

Mendelian randomization 

 

INTRODUCTION 

The ovary is essential for establishing and maintaining secondary sexual characteristics and 

fertility in females. However, primary ovarian failure (POF) negatively influences 

reproductive health and induces disorders of ovarian function. POF is defined as the presence 

of postmenopausal levels of follicle-stimulating hormone (FSH) (> 40 IU/L) in woman under 

40 years of age, with four or more months of secondary amenorrhea, which refers to the 

exhaustion of the ovarian reserve before the age of 40 years. In addition, women with POF 

present menopausal symptoms and are adversely affected by long-term estrogen deprivation, 

which seriously affects women’s physical and mental health.1 Given that the chance of 

spontaneous conception is 5%-10%,2 adoption or in vitro fertilization and embryo transfer 

using donor oocytes are considered effective fertility treatments for women with POF. The 

etiology of POF is heterogeneous, including genetic defects, autoimmune diseases, iatrogenic 
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factors (radiotherapy, chemotherapy, and ovarian surgery), and environmental factors.3 

However, most patients is idiopathic and the cause is unclear. Compared with immobile 

etiologies such as genetic and iatrogenic factors, learning and understanding the influence of 

modifiable factors such as diet, metabolic traits and gut microbiota in POF seem more 

valuable for the prevention and treatment of this disease. The most established and well-

learning dietary factor associated with POF is smoking, while caffeine intake is suggested as a 

potential factor.4 Several observational studies have suggested that smoking duration,5-8 

caffeine consumption,9-11 and fruit intake12,13 were associated with the age of menopause. In 

addition, the gastrointestinal tract, which hosts ten trillion diverse symbionts (50 bacterial 

phyla and approximately 100–1000 bacterial species), has been extensively studied owing to 

its basic functions in the immunological, metabolic, structural and neurological landscapes in 

humans.14 The  interactions of the gut microbiota with estrogen, androgens, insulin, and other 

hormones appear to be crucial for the reproductive endocrine system.15 Imbalance of the gut 

microbiota composition can lead to polycystic ovary syndrome (PCOS),16-18 

endometriosis,19,20 ovarian dysfunction,21 and ovarian cancer.22 However, less is known about 

the exact role of diet and gut microbiota in ovarian physiology, and few studies have explored 

the causal relationship between the gut microbiota and POF.23 

Although randomized controlled trials (RCTs) are the gold standard for establishing causal 

relationships, they can be costly, time-consuming and even impractical.24 On the other hand, 

observational studies may not robustly reflect causal relationships owing to many potential 

biases, confounders and reverse causation.25 Mendelian randomization (MR) is an approach 

that uses genetic variants associated with an exposure as instrumental variables (IVs) to 

examine the causality of exposure–outcome associations. MR can minimize potential 

confounders and reverse causality as genetic variants segregate randomly and independently 

and precede the outcome of interest.24 Furthermore, during the last decade, the publication of 

a large volume of genome-wide association studies (GWASs) has led to the conduct of MR 

studies without the need to recruit new patients. Therefore, MR offers a suitable means to 

infer the causal effect between the risk factors and POF. Here, we conducted an MR study to 

investigate the associations of dietary and metabolic factors and gut microbiota with the risk 

of POF.  
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MATERIALS AND METHODS 

We assessed the causal links between the lifestyle-related exposure factors and POF using 

two-sample MR. An overview of the analytical approach is shown in Figure 1A. 

 

Exposure data 

Diet-related exposure factors used in this study included cigarettes smoked per day, coffee 

intake, fresh fruit intake, and cooked vegetable intake. Metabolism-related exposure factors 

used in this study included body mass index (BMI), fasting insulin, and fasting glucose. These 

GWAS summary-level data were extracted from IEU open GWAS project. We obtained 

genetic variant information related to the human gut microbiome composition from the latest 

large-scale genome-wide meta-analysis conducted by the MiBioGen consortium 

(https://mibiogen.gcc.rug.nl/.) based on European-dominated participants.26 This study 

analyzed genome-wide genotypes and 16S fecal microbiome data from 18,340 individuals 

from 24 cohorts. Accordingly, the genus level was the lowest. A total of 131 genera with a 

mean abundance greater than 1% were identified, 12 of which were unknown genera.26 As a 

result, we included 119 genus-level taxa in the present study. More information about the 

exposure datasets is presented in Table 1. 

 

Outcome data 

GWAS summary statistics related to POF were obtained from the FinnGen Consortium 

release data (https: //www.r8.finngen.fi/.), one of the largest nationwide genetic studies with 

access to comprehensive electronic health register data of participants. Detailed information 

on used exposure datasets is presented in Table 1. 

 

Instrumental variable selection 

Single-nucleotide polymorphisms (SNPs) are used as IVs in MR analysis to provide evidence 

of causality between the exposure and outcome. To ensure the accuracy and robustness of the 

causal links, SNPs must satisfy three core assumptions to be used as IVs (Figure 1B).27 

Therefore, we selected independent SNPs (linkage disequilibrium R2 < 0.001 and clumping 

distance=10,000 kb, based on the European-based 1000 Genome Projects reference panel) 

associated with each exposure factor at a genome-wide threshold of significance (p  <0.0001, 

diet-related and metabolism-related exposure factors) or at a locus-wide threshold of 

significance (p  <0.0001, gut microbiome-related exposure factors).  

 

https://mibiogen.gcc.rug.nl/.)
http://www.r8.finngen.fi/.),
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Statistical analysis 

The inverse variance weighted (IVW) method was used as the primary statistical method and 

can provide the most accurate causal estimates provided that the pleiotropic effect is balanced 

and that all IVs meet the MR assumptions.28 Since it is difficult to verify that IVs influence 

the outcome only through the exposure of interest, we performed a series of sensitivity 

analyses with different assumptions to assess the robustness of the associations and to 

examine horizontal pleiotropy for exposures, including weighted median, MR-Egger, simple 

mode,and weighted mode. The weighted median of SNP-specific estimates provides valid 

estimates when more than 50% of the information is contributed from the IVs.29 MR-Egger 

regression provides a valid estimate of causal estimates under the instrument strength 

independent of direct effect (InSIDE) assumption.30 However, this approach was used to 

detect and adjust for unbalanced horizontal pleiotropy rather than to produce causal estimates 

due to the low statistical power of MR-Egger. A MR-Egger intercept significantly different 

from 0 (p < 0.05) indicates the occurrence of directional pleiotropy and a potentially biased 

IVW estimate. To further test the robustness of our results, Cochran’s Q test was used to 

evaluate heterogeneity among the SNPs included in each analysis. Q statistics significant at p 

< 0.05 provide evidence for heterogeneity between individual genetic variants and the 

existence of invalid instruments.31 In addition, leave-one-out analysis was performed to assess 

whether an outcome was driven by a single outlying SNP,32 indicating the presence of 

heterogeneous SNPs. Furthermore, if the genetic variants do not explain enough of the 

variance, there will be significant weak instrumental bias toward the confounded estimate.33 

To address this concern, SNP-specific F-statistics, approximated by the square of the beta 

divided by the variance for the SNP-exposure association, were calculated to evaluate the 

strength of the instruments used, and values exceeding the standard threshold of 10 are 

indicative of strong genetic instruments.33  

All tests were two-sided and performed using R Version 4.2.1 with the R packages 

“TwoSampleMR” and “MendelianRandomization”. A p value < 0.05 indicated statistical 

significance of the MR effect estimate. No ethical approval was required since we used 

publicly available summary data. 

 

RESULTS 

SNP selection 

There were 22 SNPs associated with cigarettes smoked per day, 38 SNPs associated with 

coffee intake, 53 SNPs associated with fresh fruit intake, 17 SNPs associated with cooked 
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vegetable intake, 414 SNPs associated with BMI, 37 SNPs associated with fasting insulin, 60 

SNPs associated with fasting glucose, and 1508 SNPs associated with gut microbiota selected 

for the MR analyses according to the IV selection criteria. The detailed information and F-

statistic for the selected instruments are shown in Supplementary Table 1. The overall 

instrument had a high F-statistic (>10), indicating the good strength of the genetic instruments 

used. 

 

MR analysis 

Figure 2 shows causal effect estimates of the dietary and metabolic factors and gut microbiota 

on POF from the IVW MR analyses. Associations for exposures using the different MR 

methods are presented in Supplementary Tables 2-4. Scatter and forest plots of the SNP-

outcome associations against the SNP-exposure associations are shown in Supplementary 

Figures 1-6, allowing visualization of the causal effect estimate for each individual SNP on 

POF. Leave-one-out plots are shown in Supplementary Figures 7-9 to evaluate the influential 

outliers. 

MR analysis via the IVW method showed that cigarettes smoked per day  (OR = 1.00, 95% 

CI: 0.77–1.30, p = 0.982), coffee intake (OR = 2.05, 95% CI: 0.87–4.84, p = 0.103), cooked 

vegetable intake (OR = 3.13, 95% CI: 0.37–26.09, p = 0.292), fasting insulin (OR = 1.61, 

95% CI: 0.66–3.96, p = 0.298), and fasting glucose (OR = 1.04, 95% CI: 0.67–1.60, p = 

0.864) had no genetic causal relationship with POF (Figure 2). However, fresh fruit intake 

(OR = 7.33, 95% CI: 2.36–22.71, p = 0.001) and BMI (OR = 1.99, 95% CI: 1.60–2.48, p < 

0.001) were related to an increased risk of POF. In addition, six gut microbiome taxa were 

significantly associated with POF risk (Figure 2). IVW method revealed that Eubacterium 

(hallii group) and Eubacterium (ventriosum group) were negatively associated with the risk 

of POF (OR = 0.49, 95% Cl: 0.26–0.90, p = 0.022; OR = 0.51, 95% Cl: 0.27–0.97, p = 0.040), 

while Adlercreutzia, Intestinibacter, Lachnospiraceae (UCG008), and Terrisporobacter were 

positively associated with the risk of POF (OR = 3.01, 95% Cl: 1.38–6.60, p = 0.006; OR = 

1.82, 95% Cl: 1.04–3.20, p = 0.037; OR = 1.73, 95% Cl: 1.08–2.76, p = 0.023; OR = 2.47, 

95% Cl: 1.14–5.36, p = 0.022) (Figure 2).  

 

Sensitivity analyses 

The observed causal associations were consistent in sensitivity analyses.  MR-Egger 

regression showed no evidence of directional pleiotropic effect across the genetic variants 

(intercept, p > 0.05) (Table 2 and Supplementary Tables 5-7). There was no evidence of 
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heterogeneity in the IVW analysis using Cochran’s Q test (p > 0.05) (Table 2 and 

Supplementary Tables 5-7). Although there were outliers present on visual inspection in both 

scatter (Supplementary Figures 1-3) and forest plots (Supplementary Figures 4-6), the results 

of the leave-one-out sensitivity analysis indicated that the associations between dietary and 

metabolic factors and gut microbiota with POF were not substantially driven by any 

individual SNP (Supplementary Figures 7-9), suggesting the robustness of the results. 

 

DISCUSSION 

We conducted MR analyses by using the largest GWAS datasets to systematically investigate 

the causal relationship between the dietary and metabolic factors and gut microbiota with risk 

of POF. Our results showed that fresh fruit intake and BMI was associated with an increased 

risk of POF. Six gut microbiome taxa were associated with the risk of POF. Eubacterium 

(hallii group) and Eubacterium (ventriosum group) appeared to confer a protective effect 

against POF, while Adlercreutzia, Intestinibacter, Lachnospiraceae (UCG008), and 

Terrisporobacter increased the risk of POF. This study could provide important insight into 

the genetic relationship between dietary and metabolic factors and gut microbiota with POF 

and shed new light on the potential causes and therapeutic strategies for POF. 

Altered gut microbial profiles have been observed in women with POF.21 Additionally, 

Elgart et al.34 reported that the gut bacteria of Drosophila can affect oogenesis and maternal-

to-zygotic transition during embryo development. In this study, we found that Eubacterium 

(hallii group) and Eubacterium (ventriosum group) had protective effects on POF. 

Eubacterium produces short-chain fatty acids (SCFAs). SCFAs, including propionate, acetate 

and butyrate, are the main products of the fermentation of dietary fiber by the intestinal 

microbiota.35 Butyrate can enhance the expression of tight-junction proteins and mucin to 

maintain the intestinal epithelial barrier,36 which is the first line of defense in the intestine. 

The abundance of Eubacterium in the gut is strongly correlated with SCFA levels and the 

beneficial effects of SCFAs under a range of clinical conditions.37 Several studies have shown 

that SCFAs play a major role in the modulation of inflammation through the inhibition of 

proinflammatory cytokines, such as interferon (IFN)-γ, interleukin (IL)-1β, IL-6, IL-8, and 

tumor necrosis factor receptor-α (TNF-α), while upregulating the expression of anti-

inflammatory cytokines, such as IL-10 and transforming growth factor-β (TGF-β).38,39 The 

human ovary is a ubiquitous target for autoimmune attack, leading to the consequent 

occurrence of POF.40 Autoimmunity is responsible for approximately 4–30% of POF 

cases.41,42 E. hallii and E. ventriosum may act as anti-inflammatory agents to protect the ovary 
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from inflammation. On the other hand, we found that Adlercreutzia, Intestinibacter, 

Lachnospiraceae (UCG008), and Terrisporobacter increased the risk of POF. Other studies 

have shown that these 4 gut microbiome taxa are correlated with the risk of diabetic 

retinopathy, male infertility, periodontitis, and sepsis.43-46 However, there is a lack of 

corresponding research evidence to clarify the underlying mechanism by which these gut 

microbiome taxa contribute to POF, thus providing new directions for future studies. 

Smoking is a worldwide issue. Cigarette smoke contains several toxicants, including 

polycyclic aromatic hydrocarbons (PAHs), such as benzoapyrene (BaP), nitrosamines, heavy 

metals (cadmium), alkaloids and aromatic amines, which have different properties and targets. 

Therefore, these chemical compounds may exert hazardous effects on the entire reproductive 

system in women.47 It has been documented that active smoking was associated with earlier 

menopause.5-8 The tobacco-mediated ovarian injury characterizes by a significant decline in 

steroidogenesis,47,48 and folliculogenesis.49-54 Evidence from experimental models have shown 

that a single high dose of PAHs led to the loss of primordial and primary follicles.55 In 

addition, in-vitro studies have demonstrated that BaP could induce demise and altered growth 

of rat and mouse follicles50,52 and exposure to nicotine could cause decreased estradiol 

production in cultured granulosa bovine cells.56 The pathophysiological mechanism behind 

tobacco-mediated ovarian injury involves a range of factors such as oxidative stress,57-60 DNA 

damages,61 and follicle loss through autophagy/apoptosis.62-65 However, a meta-analysis 

comprising 15 studies found that current smoking had a relationship with an earlier age of 

natural menopausal but the association disappeared in former smoking.66 The results of this 

study show that there was no causal relationship between cigarettes smoked per day and POF 

at the genetic level. The cigarettes smoked per day-POF association might attenuate due to the 

definitions of phenotypes of cigarettes smoked per day, which included both a current smoker 

and former smoker. Although several studies were devoted to investigating the relationship 

between drinking coffee and the age of menopause, data are lacking on POF. Currently 

published studies have suggested no association between coffee intake and early menopause 

or ovarian age indicators such as anti-Müllerian hormone (AMH) and FSH.9-11 Combined with 

the results of our study, we considered that there was no causal relationship between coffee 

intake and POF at the genetic level. A large prospective study involving 33,054 Shanghai 

women has found that a high level of fruit intake (>383.2 g/day) was associated with delayed 

menopause.12 Another study also supported the finding.13 The association of fruit intake with 

POF could, in part, be related to the antioxidant content in fruit. However, according to our 

study, fresh fruit intake associated with an increased risk of POF. Potential mechanisms 
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underlying this association need to be explored in mechanistic studies. The association 

between BMI and POF remains much less understood and even controversial. Both 

overweight and underweight had been reported to be associated with earlier menopause. Our 

study can provide evidence of causal association. Various mechanisms could explain how 

overweight might influence the development of ovarian aging. It is known that being 

overweight can increase oxidative stress in the body through a number of potential 

mechanisms.67,68 In addition, obesity is related to chronic low-grade inflammation in the 

body.69 Adipose tissue is an important endocrine organ that produces adipokines contributing 

to a state of inflammation.  

This study has several strengths. The major merit is MR design which can exclude the 

interference of confounding factors and reverse causality to a large extent. Furthermore, 

nonoverlapping exposure and outcome summary-level data were used to avoid unnecessary 

bias.70 In order to ensure the accuracy of MR analysis, horizontal pleiotropy was detected and 

excluded by the MR-Egger regression intercept test. Limitations need consideration when 

interpreting our results. First, our study only analyzed populations from Europe, and the 

generalizability of results must be approached with caution when extend to other populations. 

Secondly, our study was only conducted at the genetic level, and did not explore the exact 

mechanisms behind the association. Finally, because genus was the lowest taxonomic level in 

the exposure datasets, we could not further explore the causal association between gut 

microbiota and POF at the species level.  

 

Conclusion  

To conclude, we first provide evidence to show that fresh fruit intake and BMI was associated 

with an increased risk of POF. Six gut microbiome taxa were associated with the risk of POF. 

Eubacterium (hallii group) and Eubacterium (ventriosum group) appeared to confer a 

protective effect against POF, while Adlercreutzia, Intestinibacter, Lachnospiraceae 

(UCG008), and Terrisporobacter increased the risk of POF. Our results provide potential 

therapeutic targets for POF. At the same time, it is necessary to validate these findings and 

explore the underlying mechanisms in clinical trials and animal models.  
 
SUPPLEMENTARY MATERIALS 
All supplementary tables and figures are available upon request. 

 

 



11 

ACKNOWLEDGEMENTS 

We express our gratitude to the participants of the FinnGen study and the MiBioGen 

consortium for releasing the gut microbiota GWAS summary statistics. 

 

CONFLICT OF INTEREST AND FUNDING DISCLOSURE 

The authors report there are no competing interests to declare.  

This research was funded by National Key Research and Development Program of China 

(No. 2022YFC2703803, No.2022YFC2703000, No.2021YFC2700603), National Natural 

Science Foundation of China (No.82088102, No.82171613, No.82171688), CAMS 

Innovation Fund for Medical Sciences (2019-I2M-5-064), Collaborative Innovation Program 

of Shanghai Municipal Health Commission (2020CXJQ01), Key Discipline Construction 

Project (2023-2025) of Three-Year Initiative Plan for Strengthening Public Health System 

Construction in Shanghai (GWVI-11.1-35), Shanghai Clinical Research Center for 

Gynecological Diseases (22MC1940200), Shanghai Urogenital System Diseases Research 

Center (2022ZZ01012), Shanghai Frontiers Science Research Center of Reproduction and 

Development, Zhejiang Province College Student Science and Technology Innovation 

Program (Xinmiao Plan) (2023R401210). 

 

REFERENCES 
1. Woad KJ, Watkins WJ, Prendergast D, Shelling AN. The genetic basis of premature ovarian failure. 

Aust N Z J Obstet Gynaecol. 2006; 46: 242–244. doi:10.1111/j.1479-828X. 2006.00585.x. 

2.  Goswami D, Conway GS. Premature ovarian failure. Hum Reprod Update. 2005; 11: 391-410. 

doi:10.1093/humupd/dmi012. 

3.   Qin Y, Jiao X, Simpson JL, Chen ZJ. Genetics of primary ovarian insufficiency: new developments and 

opportunities. Hum Reprod Update. 2015; 21: 787–808. doi: 10.1093/humupd/dmv036. 

4.   Yang Y, Huang W, Yuan L. Effects of environment and lifestyle factors on premature ovarian failure. 

Adv Exp Med Biol. 2021;1300:63-111. doi: 10.1007/978-981-33-4187-6_4.  

5.   Mattison DR. The effects of smoking on fertility from gametogenesis to implantation. Environ Res. 

1982; 28: 410-33. doi: 10.1016/0013-9351(82)90139-6.  

6.    Adena MA, Gallagher HG. Cigarette smoking and the age at menopause. Ann Hum Biol. 1982; 9 :121-

30. doi: 10.1080/03014468200005591. 

7.   Baron JA, La Vecchia C, Levi F. The antiestrogenic effect of cigarette smoking in women. Am J Obstet 

Gynecol. 1990; 162: 502-14. doi: 10.1016/0002-9378(90)90420-c. 

8.   Sun L, Tan L, Yang F, Luo Y, Li X, Deng HW, Dvornyk V. Meta-analysis suggests that smoking is 

associated with an increased risk of early natural menopause. Menopause. 2012; 19: 126-32. doi: 

10.1097/gme.0b013e318224f9ac. 



12 

9.  Mikkelsen TF, Graff-Iversen S, Sundby J, Bjertness E. Early menopause, association with tobacco 

smoking, coffee consumption and other lifestyle factors: a cross-sectional study. BMC Public Health. 

2007; 7: 149. doi: 10.1186/1471-2458-7-149. 

10.  Kline J, Tang A, Levin B. Smoking, alcohol and caffeine in relation to two hormonal indicators of 

ovarian age during the reproductive years. Maturitas. 2016; 92: 115-122. doi: 

10.1016/j.maturitas.2016.07.010.  

11.  Kinney A, Kline J, Kelly A, Reuss ML, Levin B. Smoking, alcohol and caffeine in relation to ovarian 

age during the reproductive years. Hum Reprod. 2007; 22: 1175-85. doi: 10.1093/humrep/del496. 

12.  Dorjgochoo T, Kallianpur A, Gao YT, Cai H, Yang G, Li H, Zheng W, Shu XO. Dietary and lifestyle 

predictors of age at natural menopause and reproductive span in the Shanghai Women's Health Study. 

Menopause. 2008; 15: 924-33. doi: 10.1097/gme.0b013e3181786adc. 

13. Wang M, Gong WW, Hu RY, Wang H, Guo Y, Bian Z, Lv J, Chen ZM, Li LM, Yu M. Age at natural 

menopause and associated factors in adult women: Findings from the China Kadoorie Biobank study in 

Zhejiang rural area. PLoS One. 2018;13: e0195658. doi: 10.1371/journal.pone.0195658.  

14. Adak A, Khan MR. An insight into gut microbiota and its functionalities. Cell Mol Life Sci. 2019; 76: 

473-493. doi: 10.1007/s00018-018-2943-4. 

15. Qi X, Yun C, Pang Y, Qiao J. The impact of the gut microbiota on the reproductive and metabolic 

endocrine system. Gut microbes. 2021; 13: 1-21. doi: 10.1080/19490976.2021.1894070. 

16. Zhou L, Ni Z, Cheng W, Yu J, Sun S, Zhai D, Yu C, Cai Z. Characteristic gut microbiota and predicted 

metabolic functions in women with PCOS. Endocr Connect. 2020; 9: 63-73. doi: 10.1530/EC-19-0522. 

17. Lindheim L, Bashir M, Münzker J, Trummer C, Zachhuber V, Leber B, Horvath A, Pieber TR, 

Gorkiewicz G, Stadlbauer V, Obermayer-Pietsch B. Alterations in gut microbiome composition and 

barrier function are associated with reproductive and metabolic defects in women with polycystic 

ovary syndrome (PCOS): a pilot study. PloS one. 2017; 12: e0168390. doi: 

10.1371/journal.pone.0168390. 

18. Liu R, Zhang C, Shi Y, Zhang F, Li L, Wang X, Ling Y, Fu H, Dong W, Shen J, Reeves A, Greenberg 

AS, Zhao L, Peng Y, Ding X. Dysbiosis of gut microbiota associated with clinical parameters in 

polycystic ovary syndrome. Front Microbiol. 2017; 8: 324. doi: 10.3389/fmicb.2017.00324. 

19. Ata B, Yildiz S, Turkgeldi E, Brocal VP, Dinleyici EC, Moya A, Urman B. The endobiota study 

comparison of vaginal, cervical and gut microbiota between women with stage 3/4 endometriosis and 

healthy controls. Sci Rep. 2019; 9: 2204. doi: 10.1038/s41598-019-39700-6. 

20. Shan J, Ni Z, Cheng W, Zhou L, Zhai D, Sun S, Yu C. Gut microbiota imbalance and its correlations 

with hormone and inflammatory factors in patients with stage 3/4 endometriosis. Arch Gynecol Obstet. 

2021; 304: 1363-1373. doi: 10.1007/s00404-021-06057-z. 

21. Wu J, Zhuo Y, Liu Y, Chen Y, Ning Y, Yao J. Association between premature ovarian insufficiency 

and gut microbiota. BMC Pregnancy Childbirth. 2021; 21: 418. doi: 10.1186/s12884-021-03855-w. 



13 

22. Hu X, Xu X, Zeng X, Jin R, Wang S, Jiang H, Tang Y, Chen G, Wei J, Chen T, Chen Q. Gut 

microbiota dysbiosis promotes the development of epithelial ovarian cancer via regulating Hedgehog 

signaling pathway. Gut Microbes. 2023; 15: 2221093. doi: 10.1080/19490976.2023.2221093. 

23. Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. NEJM. 2016; 375: 

2369-2379. doi: 10.1056/NEJMra1600266. 

24. Evans DM, Davey Smith G. Mendelian randomization new applications in the coming age of 

hypothesis-free causality. Annu Rev Genomics Hum Genet. 2015; 16: 327-350. doi: 10.1146/annurev-

genom-090314-050016. 

25. Lawlor DA, Harbord RM, Sterne JAC, Timpson N, Davey Smith G. Mendelian randomization using 

genes as instruments for making causal inferences in epidemiology. Stat Med. 2008; 27: 1133-1163. 

doi: 10.1002/sim.3034. 

26. Kurilshikov A, Medina-Gomez C, Bacigalupe R, Radjabzadeh D, Wang J, Demirkan A, Le Roy CI, 

Raygoza Garay JA, Finnicum CT, Liu X, Zhernakova DV, Bonder MJ, Hansen TH, Frost F, 

Rühlemann MC, Turpin W, Moon JY, Kim HN, Lüll K, Barkan E, Shah SA, Fornage M, Szopinska-

Tokov J, Wallen ZD, Borisevich D, Agreus L, Andreasson A, Bang C, Bedrani L, Bell JT, Bisgaard H, 

Boehnke M, Boomsma DI, Burk RD, Claringbould A, Croitoru K, Davies GE, van Duijn CM, Duijts 

L, Falony G, Fu J, van der Graaf A, Hansen T, Homuth G, Hughes DA, Ijzerman RG, Jackson MA, 

Jaddoe VWV, Joossens M, Jørgensen T, Keszthelyi D, Knight R, Laakso M, Laudes M, Launer LJ, 

Lieb W, Lusis AJ, Masclee AAM, Moll HA, Mujagic Z, Qibin Q, Rothschild D, Shin H, Sørensen SJ, 

Steves CJ, Thorsen J, Timpson NJ, Tito RY, Vieira-Silva S, Völker U, Völzke H, Võsa U, Wade KH, 

Walter S, Watanabe K, Weiss S, Weiss FU, Weissbrod O, Westra HJ, Willemsen G, Payami H, 

Jonkers DMAE, Arias Vasquez A, de Geus EJC, Meyer KA, Stokholm J, Segal E, Org E, Wijmenga C, 

Kim HL, Kaplan RC, Spector TD, Uitterlinden AG, Rivadeneira F, Franke A, Lerch MM, Franke L, 

Sanna S, D'Amato M, Pedersen O, Paterson AD, Kraaij R, Raes J, Zhernakova A. Large-scale 

association analyses identify host factors influencing human gut microbiome composition. Nat Genet. 

2021; 53: 156-165. doi: 10.1038/s41588-020-00763-1. 

27. Sekula P, Del Greco MF, Pattaro C, Köttgen A. Mendelian randomization as an approach to assess 

causality using observational data. J Am Soc Nephrol. 2016; 27: 3253-3265. doi: 

10.1681/ASN.2016010098. 

28. Burgess S, Scott RA, Timpson NJ, Davey Smith G, Thompson SG; EPIC- InterAct Consortium. Using 

published data in Mendelian randomization: a blueprint for efficient identification of causal risk 

factors. Eur J Epidemiol. 2015; 30: 543–552. doi:10.1007/s10654-015-0011-z. 

29. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization 

with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016; 40: 304-

314. doi: 10.1002/gepi.21965. 

30. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments effect 

estimation and bias detection through Egger regression. Int J Epidemiol. 2015; 44: 512-525. doi: 

10.1093/ije/dyv080. 



14 

31. Greco M FD, Minelli C, Sheehan NA, Thompson JR. Detecting pleiotropy in Mendelian randomisation 

studies with summary data and a continuous outcome. Stat Med. 2015; 34: 2926-2940. doi: 

10.1002/sim.6522. 

32. Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger 

method. Eur J Epidemiol. 2017; 32: 377-389. doi: 10.1007/s10654-017-0255-x. 

33. Davies NM, Holmes MV, Davey Smith G. Reading Mendelian randomisation studies a guide, glossary, 

and checklist for clinicians. BMJ. 2018; 12: 362. doi: 10.1136/bmj.k601. 

34. Elgart M, Stern S, Salton O, Gnainsky Y, Heifetz Y, Soen Y. Impact of gut microbiota on the fly's 

germ line. Nat Commun. 2016; 7: 11280. doi: 10.1038/ncomms11280. 

35. Miller TL, Wolin MJ. Pathways of acetate, propionate, and butyrate formation by the human fecal 

microbial flora. Appl Environ Microbiol. 1996; 62: 1589-1592. doi: 10.1128/aem.62.5.1589-

1592.1996. 

36. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on 

human metabolism. Gut Microbes. 2016; 7: 189-200. doi: 10.1128/aem.62.5.1589-1592.1996. 

37. Mukherjee A, Lordan C, Ross RP, Cotter PD. Gut microbes from the phylogenetically diverse genus 

Eubacterium and their various contributions to gut health. Gut Microbes. 2020; 12: 1802866. doi: 

10.1080/19490976.2020.1802866. 

38. Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev 

Immunol. 2014; 14: 667-685.doi: 10.1038/nri3738. 

39. Corrêa-Oliveira R, Fachi JL, Vieira A, Sato FT, Vinolo MAR. Regulation of immune cell function by 

short-chain fatty acids. Clin Transl Immunology. 2016; 13: 461-472. doi: 10.1038/cti.2016.17. 

40. Petríková J, Lazúrová I. Ovarian failure and polycystic ovary syndrome. Autoimmun Rev. 2012; 

11:A471-8. doi: 10.1016/j.autrev.2011.11.010. 

41. Ebrahimi M, Akbari Asbagh F. The role of autoimmunity in premature ovarian failure. Iran J Reprod 

Med. 2015; 13: 461–472. 

42. Jiao X, Zhang H, Ke H, Zhang J, Cheng L, Liu Y, Qin Y, Chen ZJ. Premature ovarian insufficiency 

phenotypic characterization within different etiologies. J Clin Endocrinol Metab. 2017; 102: 2281-

2290. doi: 10.1210/jc.2016-3960. 

43. Liu K, Zou J, Fan H, Hu H, You Z. Causal effects of gut microbiota on diabetic retinopathy: a 

Mendelian randomization study. Front Immunol. 2022; 13: 930318. doi: 10.3389/fimmu.2022.930318. 

44. Fu ZD, Wang Y, Yan HL. Male infertility risk and gut microbiota: a Mendelian randomization study. 

Front Microbiol. 2023; 14: 1228693. doi: 10.3389/fmicb.2023.1228693. 

45. Ye X, Liu B, Bai Y, Cao Y, Lin S, Lyu L, Meng H, Dai Y, Ye D, Pan W, Wang Z, Mao Y, Chen Q. 

Genetic evidence strengthens the bidirectional connection between gut microbiota and periodontitis: 

insights from a two-sample Mendelian randomization study. J Transl Med. 2023; 21: 674. doi: 

10.1186/s12967-023-04559-9. 



15 

46. Chen JH, Zeng LY, Zhao YF, Tang HX, Lei H, Wan YF, Deng YQ, Liu KX. Causal effects of gut 

microbiota on sepsis: a two-sample Mendelian randomization study. Front Microbiol. 2023; 14: 

1167416. doi: 10.3389/fmicb.2023.1167416. 

47. Dechanet C, Anahory T, Mathieu Daude JC, Quantin X, Reyftmann L, Hamamah S, Hedon B, Dechaud 

H. Effects of cigarette smoking on reproduction. Hum Reprod Update. 2011; 17: 76-95. doi: 

10.1093/humupd/dmq033. 

48. Soldin OP, Makambi KH, Soldin SJ, O'Mara DM. Steroid hormone levels associated with passive and 

active smoking. Steroids. 2011; 76: 653-9. doi: 10.1016/j.steroids.2011.02.042.  

49. Neal MS, Zhu J, Foster WG. Quantification of benzo[a]pyrene and other PAHs in the serum and 

follicular fluid of smokers versus non-smokers. Reprod Toxicol. 2008; 25: 100-6. doi: 

10.1016/j.reprotox.2007.10.012.  

50.  Igawa Y, Keating AF, Rajapaksa KS, Sipes IG, Hoyer PB. Evaluation of ovotoxicity induced by 7, 12-

dimethylbenz[a]anthracene and its 3,4-diol metabolite utilizing a rat in vitro ovarian culture system. 

Toxicol Appl Pharmacol. 2009; 234: 361-9. doi: 10.1016/j.taap.2008.10.009.  

51. Ramesh A, Archibong AE, Niaz MS. Ovarian susceptibility to benzo[a]pyrene: tissue burden of 

metabolites and DNA adducts in F-344 rats. J Toxicol Environ Health A. 2010; 73: 1611-25. doi: 

10.1080/15287394.2010.514225. 

52. Sadeu JC, Foster WG. Effect of in vitro exposure to benzo[a]pyrene, a component of cigarette smoke, 

on folliculogenesis, steroidogenesis and oocyte nuclear maturation. Reprod Toxicol. 2011; 31: 402-8. 

doi: 10.1016/j.reprotox.2010.12.006. 

53. Sadeu JC, Foster WG. Cigarette smoke condensate exposure delays follicular development and function 

in a stage-dependent manner. Fertil Steril. 2011; 95: 2410-7. doi: 10.1016/j.fertnstert.2011.03.072. 

54. Richardson MC, Guo M, Fauser BC, Macklon NS. Environmental and developmental origins of ovarian 

reserve. Hum Reprod Update. 2014; 20: 353-69. doi: 10.1093/humupd/dmt057. 

55. Mattison DR, Thorgeirsson SS. Ovarian aryl hydrocarbon hydroxylase activity and primordial oocyte 

toxicity of polycyclic aromatic hydrocarbons in mice. Cancer Res. 1979; 39: 3471-5. 

56. Sanders SR, Cuneo SP, Turzillo AM. Effects of nicotine and cotinine on bovine theca interna and 

granulosa cells. Reprod Toxicol. 2002; 16: 795-800. doi: 10.1016/s0890-6238(02)00049-7.  

57. Nampoothiri LP, Agarwal A, Gupta S. Effect of co-exposure to lead and cadmium on antioxidant status 

in rat ovarian granulose cells. Arch Toxicol. 2007; 81: 145-50. doi: 10.1007/s00204-006-0133-x.  

58. Mai Z, Lei M, Yu B, Du H, Liu J. The effects of cigarette smoke extract on ovulation, oocyte 

morphology and ovarian gene expression in mice. PLoS One. 2014; 9: e95945. doi: 

10.1371/journal.pone.0095945. 

59. Sobinoff AP, Pye V, Nixon B, Roman SD, McLaughlin EA. Jumping the gun: smoking constituent BaP 

causes premature primordial follicle activation and impairs oocyte fusibility through oxidative stress. 

Toxicol Appl Pharmacol. 2012; 260: 70-80. doi: 10.1016/j.taap.2012.01.028.  

60. Sobinoff AP, Beckett EL, Jarnicki AG, Sutherland JM, McCluskey A, Hansbro PM, McLaughlin EA. 

Scrambled and fried: cigarette smoke exposure causes antral follicle destruction and oocyte 



16 

dysfunction through oxidative stress. Toxicol Appl Pharmacol. 2013; 271: 156-67. doi: 

10.1016/j.taap.2013.05.009. 

61. Jennings PC, Merriman JA, Beckett EL, Hansbro PM, Jones KT. Increased zona pellucida thickness 

and meiotic spindle disruption in oocytes from cigarette smoking mice. Hum Reprod. 2011; 26: 878-

84. doi: 10.1093/humrep/deq393.  

62. Tuttle AM, Stämpfli M, Foster WG. Cigarette smoke causes follicle loss in mice ovaries at 

concentrations representative of human exposure. Hum Reprod. 2009; 24: 1452-9. doi: 

10.1093/humrep/dep023.  

63. Gannon AM, Stämpfli MR, Foster WG. Cigarette smoke exposure leads to follicle loss via an 

alternative ovarian cell death pathway in a mouse model. Toxicol Sci. 2012; 125: 274-84. doi: 

10.1093/toxsci/kfr279.  

64. Gannon AM, Stämpfli MR, Foster WG. Cigarette smoke exposure elicits increased autophagy and 

dysregulation of mitochondrial dynamics in murine granulosa cells. Biol Reprod. 2013; 88: 63. doi: 

10.1095/biolreprod.112.106617.  

65. Furlong HC, Stämpfli MR, Gannon AM, Foster WG. Cigarette smoke exposure triggers the autophagic 

cascade via activation of the AMPK pathway in mice. Biol Reprod. 2015; 93: 93. doi: 

10.1095/biolreprod.115.132183.  

66. Schoenaker DA, Jackson CA, Rowlands JV, Mishra GD. Socioeconomic position, lifestyle factors and 

age at natural menopause: a systematic review and meta-analyses of studies across six continents. Int J 

Epidemiol. 2014;43:1542–62. doi: 10.1093/ije/dyu094. 

67. Olusi S. Obesity is an independent risk factor for plasma lipid peroxidation and depletion of erythrocyte 

cytoprotectic enzymes in humans. Int J Obes. 2002; 26, 1159–1164.doi: 10.1038/sj.ijo.0802066. 

68. Adnan MT, Amin MN, Uddin MG, Hussain MS, Sarwar MS, Hossain MK, Uddin SMN, Islam MS. 

Increased concentration of serum MDA, decreased antioxidants and altered trace elements and macro-

minerals are linked to obesity among Bangladeshi population. Diabetes Metab Syndr. 2019; 13, 933–

938. doi: 10.1016/j.dsx.2018.12.022. 

69. Khanna D, Khanna S, Khanna P, Kahar P, Patel BM. Obesity: A chronic low-grade inflammation and 

its markers. Cureus. 2022, 14, e22711. doi: 10.7759/cureus.22711. 

70. Burgess S, Davies NM, Thompson SG. Bias due to participant overlap in two-sample Mendelian 

randomization. Genet Epidemiol. 2016;40:597–608. doi: 10.1002/gepi.21998. 

 



17 

Table 1. Information of the exposures and outcome datasets 
 
Exposure or 
outcome 

IEU GWAS id Consortium Cases Controls  Sample 
size 

Population 

Cigarettes smoked 
per day 

ieu-b-142 GSCAN NA NA 249,752 European 

Coffee intake ukb-b-5237 MRC-IEU NA NA 428,860 European 

Fresh fruit intake ukb-b-3881 MRC-IEU NA NA 446,462 European 

Cooked vegetable 
intake 

ukb-b-8089 MRC-IEU NA NA 448,651 European 

BMI ukb-b-19953 MRC-IEU NA NA 461,460 European 
Fasting insulin ebi-a-

GCST90002238 
NA NA NA 151,013 European 

Fasting glucose ebi-a-
GCST90002232 

NA NA NA 200,622 European 

Gut microbiome NA MiBioGen 
consortium 

NA NA 18,340 European 
(N=13,266), 
Middle-Eastern 
(N=481), 
East Asian (N=811), 
American Hispanic/ 
Latin (N=1097), 
African American 
(N=114) 
multi-ancestry 
(N=2571) 

POF NA FinnGen 
consortium 

25,117 148,629 173,746 European 

 
BMI, body mass index; POF, premature ovarian failure 
 
 
 
Table 2. Heterogeneity and directional pleiotropy tests from MR analysis of the dietary and metabolic factors 
and gut microbiota with risk of POF 
 

 
BMI, body mass index.  
 

 

 
 
 
 

Exposure Heterogeneity MR‒Egger 
Cochrane’s Q p Egger Intercept SE pintercept 

Dietary factors      
 Cigarettes smoked per day 12.09 0.937 0.000 0.02 0.990 
 Coffee intake 43.06 0.228 0.021 0.01 0.142 
 Fresh fruit intake 45.16 0.738 0.009 0.02 0.609 
 Cooked vegetable intake 24.40 0.081 0.000 0.13 0.999 
Metabolic factors      
 BMI 440.57 0.168 -0.006 0.01 0.233 
 Fasting insulin 43.27 0.189 0.002 0.02 0.944 
 Fasting glucose 50.14 0.788 0.003 0.01 0.758 
Gut microbiota      
 Eubacterium (hallii group) 9.01 0.773 -0.006 0.05 0.916 
 Eubacterium (ventriosum group) 10.02 0.761 -0.020 0.11 0.858 
 Adlercreutzia 9.55 0.215 0.279 0.14 0.085 
 Intestinibacter 12.90 0.535 -0.080 0.08 0.307 
 Lachnospiraceae (UCG008) 10.44 0.491 0.096 0.12 0.446 
 Terrisporobacter 2.93 0.570 0.050 0.12 0.703 
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Figure 1. Study design (A) Flowchart showing the process for the MR analyses, including data collection, IVs selection, and 
statistical analysis. (B) Directed acyclic graph showing the assumptions of the MR methodology. MR relies on three assumptions: 
the genetic variants selected as instruments must (1) be associated with the exposures, (2) not be associated with confounders, (3) not 
directly affect the outcome, except through their effect on the exposures. SNP,single-nucleotide polymorphisms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



19 

 
 

 
 
Figure 2. Associations of genetically predicted dietary and metabolic factors and gut microbiota with risk of POF. BMI, body mass 
index; POF, premature ovarian failure; SNP,single-nucleotide polymorphisms. 
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