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ABSTRACT  

Background and Objectives: Gastric cancer (GC) is the fourth leading cause of cancer death 

worldwide. Patients with GC have higher nutritional risk. To construct a nomogram model for 

predicting preoperative nutritional risk in patients with GC in order to more precisely assess 

preoperative nutritional risk in patients. Methods and Study Design: Patients diagnosed with 

GC and undergoing surgical treatment were included in this study. Data was collected through 

clinical information, laboratory testing, and radiomics-derived characteristics. The use of the 

least absolute shrinkage selection operator (LASSO) regression analysis and multi-variable 

logistic regression is employed to construct a clinical prediction model, which takes the form 

of a logistic nomogram. The effectiveness of the nomogram model was evaluated using 

receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis 

(DCA). Results: A total of three predictors, namely body mass index (BMI), hemoglobin 

(Hb) and radiomics characteristic score (Radscore) were identified by LASSO regression 

analysis from a total of 18 variables studied. The model constructed using these three 

predictors displayed medium prediction ability. The area under the ROC curve was 0.895 

(95% CI 0.844-0.945) in the training set, with a cutoff value of 0.651, precision of 0.957, and 

sensitivity of 0.718. In the validation set, it was 0.880 (95% CI 0.806-0.954), with a cutoff 

value of 0.655, precision of 0.930, and sensitivity of 0.698. DCA also confirmed the clinical 

benefit of the combined model. Conclusions: This simple and dependable nomogram model 

for clinical prediction can assist physicians in assessing preoperative nutritional risk in GC 

patients in a time-efficient and accurate manner to facilitate early identification and diagnosis. 

 

Key Words: nutritional risk, nomogram, radiomics, prediction, gastric cancer 

 

INTRODUCTION 

Gastric cancer (GC) is a widely widespread malignancy on a global scale, occupying the fifth 

position in terms of incidence and the fourth position in terms of death. According to the 

American Cancer Society (2020), it is projected that approximately 769,000 individuals will 

succumb to this illness.1 The major therapeutic approach for advanced GC continues to be 

surgical resection, whereby minimally invasive techniques and surgical robotics have played a 

significant role in reducing patient trauma. Nevertheless, the long-term prognosis of GC is 

impacted by perioperative complications induced by nutritional risk.2-4 GC patients cannot 

avoid nutrient deficiency, nutrient absorption disorder, cachexia, and other complications 

caused by tumor consumption. They are prevalent perioperative complications that will 
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negatively affect the prognosis of patients with GC.5-7 Individualized nutrition therapy for 

patients with GC is receiving increasing attention from clinicians, and effective nutrition 

therapy will enhance clinical outcomes.8 Detecting the nutritional risk in patients with GC in a 

timely and accurate manner is an urgently needed clinical solution. 

Nutritional Risk Assessment 2002 (NRS2002) is a nutritional risk screening tool widely 

used clinically. It aims to identify individuals at nutritional risk among hospitalized patients 

so that intervention measures can be taken at an early stage. Assessing cancer patients' 

nutritional risks and treating their malnutrition aggressively may increase their quality of life.9 

There is a close relationship between the mass of skeletal muscle and the nutritional status of 

the human body. Due to malnutrition and protein absorption disorders in patients with GC, the 

incidence of skeletal muscle mass loss is high, which will have a negative impact on the 

prognosis of patients.10,11 Radiomics has the potential to study skeletal muscle mass, and 

some studies have established the reliability of using psoas characteristics of the third lumbar 

vertebra (L3) as an indicator of skeletal muscle mass loss.12-14 Our previous study 

demonstrated a correlation between the area of the L3 psoas major muscle and the nutritional 

risk,12 further deep learning for radiomics image processing and quantification may aid in 

thoroughly evaluating cancer patients' preoperative nutritional status.  

The potential for subjective misunderstandings among the participants and the limited 

scope of the questionnaire's one-way communication may compromise the reliability of the 

rating results. As a result, we performed a study at a single medical facility to analyse clinical 

data from individuals diagnosed with advanced GC. The objective of this study is to identify 

and validate the factors that influence the preoperative nutritional risk of individuals 

diagnosed with GC. Additionally, the study aims to develop a reliable risk model that can 

accurately predict the preoperative nutritional risk in patients with advanced GC. The ultimate 

goal is to enhance the detection rate of nutritional risk in GC patients and establish a well-

founded nutritional pre-rehabilitation program that encompasses comprehensive evaluation 

and effective management of perioperative nutritional status.  

 

MATERIALS AND METHODS 

Patients 

A retroactive study was conducted on a cohort of 343 patients who were diagnosed with GC 

and had surgical treatment at the Department of Gastrointestinal Surgery at the First Affiliated 

Hospital of Guangxi Medical University during the period from January 2016 to December 

2019. Patients met the following inclusion criteria in this study: (1) a histological 
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confirmation of primary GC, (2) comprehensive clinical data including laboratory test results 

obtained within two weeks period prior to surgery, and (3) the absence of any significant 

organ malfunction. The exclusion criteria encompassed three factors: (1) inadequate data, (2) 

coexistence of other malignant tumors, and (3) substandard picture quality or discernible 

distortions surrounding the L3 psoas muscle. 

This study was performed in accordance with the guidelines outlined in the Declaration of 

Helsinki and was approved by the Ethics Committee of the First Affiliated Hospital of 

Guangxi Medical University. Since the study was a retrospective study, most of the study 

subjects have died or lost contacts, and all statistics were anonymous, so the Ethics 

Committee of the First Affiliated Hospital of Guangxi Medical University agreed to waive the 

need for informed consent. 

 

Nutritional assessment 

The nutritional risk in GC patients undergoing surgery was evaluated using the Chinese 

version of NRS2002 by a trained nutritional support team in the hospital ward. NRS2002 

assessment tool has two distinct components. The first section of the analysis assesses the 

nutritional condition of the patient and addresses any recent challenges encountered in food 

consumption. Subsequently, the subsequent section presents data about the influence of 

illness severity on the individual's nutritional status. Each section is scored on a scale of 0-3, 

with additional points given to patients aged ≥ 70 years. The NRS2002 total score ranges 

from 0-7. An NRS2002 score of ≥  3 indicates a nutritional risk, while a score of < 3 indicates 

no immediate nutritional risk. 

 

Data collection 

The computerized case system utilized by the First Affiliated Hospital of Guangxi Medical 

University is responsible for the collection of demographic and clinical information. This 

includes data pertaining to age, gender, height, weight, smoking history, family history and 

tumor TNM staging. Blood samples were collected in order to assess a range of laboratory 

parameters, which encompassed hemoglobin (Hb), white blood cell count (WBC), neutrophil 

count (NEUT), total lymphocyte count (TLC), albumin (ALB), prealbumin (PAB), total 

cholesterol (TC), carcinoembryonic antigen (CEA), alpha-fetoprotein (AFP), tumor marker 

CA199, tumor marker CA125, and tumor marker CA153. The laboratory measures of 

peripheral venous blood were performed within two weeks timeframe preceding the surgical 
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procedure. BMI)was determined by dividing the respondent's kilogram weight by their square 

meter height. 

 

Texture feature extraction and selection 

Participants in this study had computed tomography (CT) scans of their abdomens before 

receiving surgical procedure. The picture segmentation process involved utilizing the 3D-

Slicer software, specifically version 4.10.2, which is considered stable. The objective was to 

outline the left and right L3 psoas muscles as the designated volume of interest 

(Supplementary Figure 2). To mitigate any interference from neighboring fat, bone, and 

surrounding organs, pixels exhibiting attenuation values below -50 HU or above 100 HU were 

eliminated from the analysis. The intra-observer ICC, as determined by two reader one 

extractions, varied between 0.853 and 0.928. Between two readers (L.Q. and P.C.), the inter-

observer agreement ranged from 0.846 to 0.907. The results showed good intra- and inter-

observer feature extraction agreements. 

The Pyradiomics (v3.6.2) software package was utilized to extract radiomics features. 

First-order statistical features (IH, intensity histogram), shape-based histogram features, and 

texture features were extracted from the volume of interest (VOI). The image underwent 

preprocessing using wavelet filtering, followed by the extraction of texture features from the 

pre-processed image. Using Haar wavelet as filter, three-layer wavelet decomposition is set 

up to effectively remove noise while preserving image details. In threshold processing, the 

soft threshold method is selected, which is automatically adjusted according to the coefficient 

distribution after each layer decomposition to achieve the best noise reduction effect. The Z-

Score method normalizes image by subtracting (µmuscle), corresponding to the mean 

intensity value of the considered ROI (here, the muscle) in training set, from each voxel 

intensity I(x) and dividing the result by the standard deviation of the ROI (σmuscle).17 The 

same mean and standard deviation were applied to normalize the validation set data:  

Iz-score (x) = [I(x) - µmuscle] / σmuscle 

The data were further processed to reduce dimension, Spearman's correlation coefficient 

was first used to remove features with a correlation coefficient greater than 0.9. Then, using 

the R glmnet software package, the minimum absolute contraction and selection operator 

(LASSO) was run to reduce the dimensionality of the features again, and the radiomic 

features related to nutritional risk diagnosis were screened. The calculation of a radiomics 

signature score (referred to as Radscore) was performed for each patient by applying 

coefficients that were weighted using the LASSO logistic regression model in the training set. 
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For each volume of interest (VOI), a comprehensive set of 102 raw characteristics and 558 

wavelet features were gathered (shown in Table S1). Within the dataset, there exist a total of 

102 distinct features. There are 18 first-order statistical features, 9 histogram features based 

on shape, 24 Gray Level Co-occurrence Matrix (GLCM) features, 14 Gray Level Dependence 

Matrix (GLDM) features, 16 Gray Level Run Length Matrix (GLRLM) features, 16 Gray 

Level Size Zone Matrix (GLSZM) features, and 5 Neighboring Gray Tone Difference Matrix 

(NGTDM) features. The radiomic features mentioned in this context have been previously 

defined in mathematical terms.15 These definitions can be accessed at the following URL: 

https://pyradiomics.readthedocs.io/en/latest/. 

 

Statistical analysis 

The statistical analysis was done in R, version 4.2.0, developed by the R Foundation for 

Statistical Computing in Vienna, Austria. Using the R caret package, the GC patients were 

randomly split into a training set and a validation set, following a 7:3 ratio. Descriptive 

statistics were used to summarize the baseline characteristics. Continuous data were reported 

in the form of medians and interquartile ranges, while categorical information was presented 

in the form of percentages. Statistical methods, including Pearson's chi-square test, Fisher's 

exact test, Mann-Whitney test, and McNemar's test, were used to conduct group comparisons 

for both categorical and continuous data, as deemed suitable for this study. The selection and 

adjustment of predictors were performed using LASSO regression analysis.16 

A prediction model for assessing the nutritional risk was constructed through the utilization 

of logistic regression analysis. This was achieved by amalgamating specific features within 

the LASSO regression model. To obtain the subset of predictors, the LASSO regression 

analysis minimizes prediction error for a quantitative response variable by imposing a 

constraint on the model parameters that cause the regression coefficients for some variables to 

shrink toward zero. Use the glmnet package to run LASSO, because the included dependent 

variable is whether the NRS2002 score is <3 or ≥3, based on type measures of -2loglikelihood 

and binomial family, the LASSO regression analysis run in R software runs 10x cross-

validation to centralize and standardize the included variables, and then select the best lambda 

value. 1SE gives a model with good performance but minimal number of independent 

variables. So the LASSO method was used to analyse the data in the training set to select the 

optimal predictors of the present risk factors. A nomogram was built based on the concept 

proposed in reference.18 The qualities that were reported are presented in the form of odds 

ratios (OR) along with corresponding 95% confidence intervals (CI). In this study, Statistical 

https://pyradiomics.readthedocs.io/en/latest/.
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significance was assessed by evaluating two-tailed p-values that were below the threshold of 

0.05. The Receiver Operating Characteristic (ROC) software was used to distinguish between 

genuine positives and false positives in the nutritional risk nomogram.19 At the same time, the 

confusion matrix (R caret package) is used to evaluate the model performance. The nutrition 

risk nomogram's calibration was evaluated using calibration curves, and its clinical 

appropriateness was assessed using decision curve analysis (DCA) by analysing the net 

benefit at different threshold probabilities (Figure 1). 

 

RESULTS 

Patient baseline data 

This study included a cohort of 284 patients diagnosed with GC, with 181 males and 103 

females. The GC patients were allocated randomly to either the training set (n=198) or the 

validation set (n=86). The baseline characteristics of the two groups of patients are shown in 

Table 1.  

At baseline, age, gender, BMI, T stage, N stage, hemoglobin (Hb), albumin (ALB), 

prealbumin (PAB), neutrophil count (NEUT), total lymphocyte count (TLC), total cholesterol 

(TC), carcinoembryonic antigen (CEA), alpha-fetoprotein (AFP), tumor markers (CA125, 

CA153, CA199) and Radscore were assessed. There were no statistically significant 

differences seen in these characteristics between the two groups (p>0.05), indicating 

comparability. Inter-group analysis of study variables stratified by NRS2002 status (positive 

and negative) is shown in the Supplementary Table 3. 

 

Radscore building based on radiomics features 

The dimension of the extracted radiomics features was reduced using LASSO logistic 

regression (Figure S1), and the significant features were identified in the training set. A total 

of six radiomics features were screened out (Table S2). The Radscore was calculated as 

follows:0.4545577175631209+0.04341*gradient_glcm_Imc2+0.01522*gradient_glrlm_Low

GrayLevelRunEmphasis+0.03121*gradient_glszm_SmallAreaLowGrayLevelEmphasis+0.02

4431*gradient_ngtdm_Coarseness+0.019694*waveletLH_gldm_SmallDependenceLowGray

LevelEmphasis+0.005178*wave-let-LL_glszm_SmallAreaLowGrayLevelEmphasis. 

 

Independent risk factors in the training set 

This study included a total of eighteen factors pertaining to clinical symptoms, laboratory 

testing and radiological score. The coefficient distribution plots were created using the log(λ) 
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sequence. By plotting the partial probability deviation (binomial deviation) versus 

log(lambda), we were able to determine the optimal parameter (lambda) in the LASSO model, 

and then we used the one standard error (1SE) criterion Wire to emphasize the vertical line 

with dots. By using lambda 1SE, we identified three variables with non-zero coefficients 

(Figure 2). 

 

Predictive model construction 

The LASSO regression analysis was used to select three predictive variables, which were 

further analysed using both univariate and multivariate logistic regression analyses (Table 2). 

Three predictive factors, BMI, Hb and RadScore constructed from radiomics features, were 

identified with statistically significant differences. A predictive model was developed using 

multivariate logistic regression, incorporating these variables, to create a preoperative 

nutritional risk nomogram for GC (Figure 3). 

 

Predictive model validation 

Receiver operating characteristic (ROC) curves and confusion matrix were used to assess the 

sensitivity and specificity of the prediction models. The performance of the predictive models 

was assessed using a training set, yielding an area under the curve (AUC) value of 0.895 

(95% CI 0.844-0.945), a cutoff value of 0.651, a precision of 0.957, and a sensitivity of 0.718. 

Similarly, the models were tested using a validation set, resulting in an AUC of 0.880 (95% 

CI 0.806-0.954), a cutoff value of 0.655, a precision of 0.930, and a sensitivity of 0.698. The 

combined nomograms AUC and confusion matrix demonstrated fair to good performance 

(Figure 4). We also compared the combined model with the clinical model and the radiomics 

model (Supplementary Figure 3). 

The prediction models were calibrated using calibration curves and the Hosmer-Lemeshow 

test, and the p-value of the Hosmer-Lemeshow test for the training set is 0.689, and the p-

value of the Hosmer-Lemeshow test for the validation set is 0.7346. The calibration curve 

reveals strong alignment between the projected model and validation set. The Hosmer-

Lemeshow study shows remarkable agreement between calculated and observed probabilities 

(Figure 5). The nomogram DCA also suggests that this model could be valuable in a clinical 

setting (Figure 6). 
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DISCUSSION 

Malnutrition is a significant clinical issue in patients with GC, which can impact both 

treatment effectiveness and patients' quality of life. The initial step in preventing and treating 

malnutrition in these patients is to conduct nutritional risk screening. It is crucial to promptly 

and accurately identify the nutritional risk, followed by a comprehensive nutritional 

assessment to diagnose malnutrition. This allows clinicians to take appropriate measures for 

GC patients. Adequate nutritional interventions and support can enhance the patient's 

treatment response and expedite their recovery. In this study, we retrospectively analysed 

relevant data of GC patients before surgical treatment to develop and validate a nomogram 

model. This model combines clinical data and radiological features (Radscore) to predict 

nutritional risk in GC patients before surgical treatment. By utilizing this model, clinicians 

can make informed clinical decisions and implement a comprehensive assessment and 

diagnosis of nutritional risk in GC patients before surgical treatment. 

NRS2002 is a well-known method for detecting individuals at nutritional risk, and it is 

often used for nutritional screening in cancer patients. According to research by Zang et al., 

cancer patients at risk of malnutrition had a reduced overall survival rate and an increased 

likelihood of developing complications after surgery.20 However, a multicenter study utilized 

NRS2002 to evaluate the nutritional risk among individuals with gastrointestinal diseases. 

The findings revealed that the prevalence of malnutrition among individuals diagnosed with 

gastrointestinal cancer was a mere 17.6%, certain patients diagnosed with GC evaded 

detection by screening instruments.21 Furthermore, a comparative analysis of the diagnostic 

accuracy of various nutrition screening instruments for adult malnutrition was conducted by 

Cheung et al. NRS2002 demonstrated exceptional diagnostic capability but a 27.7% rate of 

missed diagnoses.22 False negative results of nutritional risk screening may be more 

detrimental to cancer patients than false positive results. The improvement of cancer 

nutritional risk assessment is a clinical issue that requires resolution. We were motivated by 

the study of Xie et al., who coupled systemic inflammatory indicators with GLIM criteria and 

found that GLIM criteria based on inflammatory markers had greater predictive power in 

assessing the short-term and long-term prognosis of cancer patients.23 Consequently, we 

maintain the conviction that the multi-dimensional nutritional risk prediction system for 

patients diagnosed with GC has practical applicability in the clinic, in an effort to construct a 

predictive model that incorporates radiomics features and clinical data. It has been validated 

that the model possesses decent predictive ability. (AUC > 0.8). 
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Hemoglobin levels may be used to indicate the nutritional risk in patients. Hb declines as 

malnutrition progresses, and investigations have verified this association.24,25 However, Zhou 

et al. discovered that only the Hb index was employed to evaluate the nutritional status of 

hospitalized patients, and the percentage of nutritional risk identification was only 24%.26 

Similarly, BMI is an indicator that is used to analyse the connection between weight and 

height, giving information on a person's weight status and reflecting some nutritional status 

features.27,28 Although the NRS2002 includes BMI as an auxiliary indication for nutritional 

risk screening, assessing nutritional status just by utilizing the scale's BMI cut-off points may 

be inaccurate. Several tools were employed in a study to evaluate the nutritional health 

condition of elderly inpatients. The findings revealed that the detection rate of risk screening 

based just on BMI was the lowest, at 23.7%.29 As a result, assessing patients' nutritional status 

only on a single indicator is insufficient. Our findings show that BMI and Hb are independent 

risk factors for preoperative nutritional risk in patients with GC. This prediction model may 

thoroughly analyse patients' nutritional status using numerous criteria, optimize the 

importance of risk factors, and increase the accuracy of preoperative nutritional risk 

screening. 

Radiomics is an emerging image analysis method that can convert CT, MRI, and PET-CT 

images into high-throughput radiomics feature data.30 These features can then be used to 

establish radiomics by linear or nonlinear machine learning methods, which can be further 

analyzed.31 Studies have reported that radiomics features can be used to predict sarcopenia in 

patients with GC, and that it is associated with the prognosis of these patients. For example, 

Lan et al. used CT images to extract radiomics features of sarcopenia and combined them 

with a clinical prediction model to individually predict postoperative complications in patients 

with GC, showing good prediction performance (training set AUC is 0.763).32 Chen et al. 

used LASSO analysis to identify 14 psoas major muscle radiomics features, which were then 

incorporated in the radiomics scoring model. The subjectivity of sarcopenia assessment was 

minimized after quantitative examination, and prediction accuracy was enhanced.33 The 

methodologies outlined above are utilized in this study, radiomics data from the psoas major 

muscle at the L3 level were retrieved from CT images of 284 individuals with GC. Six 

relevant radiomics features were chosen for the scoring model and then coupled with clinical 

data to create a nomogram model to predict the preoperative nutritional risk in patients. In 

these radiomics features, Gray-level co-occurrence matrix (GLCM) represents second-order 

statistics, which describe the correlation of neighboring voxels according to different angles. 

Gray-level run length matrix (GLRLM) represents run length of similar gray-level in the 
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image. Gray-level size zone matrix (GLSZM) represents different gray-level zones in the 

image and their distribution. Neighboring gray tone difference matrix (NGTDM) represents 

the difference between gray-level and the average within certain distances. Gray-level-

dependent matrix (GLDM) represents gray-level dependencies independent from angles.34,35 

In consideration of physical condition and radiomics score, the model is capable of 

conducting a comprehensive evaluation of patients' nutritional status. The nomogram presents 

clinically relevant recommendations for comprehensive screening of nutritional risk by 

displaying the proportion of each influential factor. 

This study focuses on the integration of clinical data and imaging studies, which are crucial 

components in the development of a clinical practice prediction system. Our established 

clinical prediction model is user-friendly and enables accurate and prompt assessment of 

nutritional risk in GC patients. It has undergone comprehensive and successful verification. 

However, our clinical prediction model does have certain limitations. Firstly, the sample size 

of this study is modest, and it is required to raise the sample size in the future in order to 

enhance the correlation of radiomics scores and to collaborate with other institutions for 

external verification. Secondly, in future clinical studies, the model can be further improved 

by incorporating body composition analysis to better cater to the needs of gastrointestinal 

surgeons. Furthermore, apart from NRS2002, there are several other excellent nutrition 

assessment tools that are widely used in clinical settings. The integration of multiple 

screening tools may offer valuable insights into the clinical potential of the nutritional risk 

nomogram prediction model. 

 

Conclusion 

Based on the laboratory examination, pathological data and analysis of clinical data and 

radiomics features of GC patients conducted at our institution, we found that BMI, Hb and 

Radscore were independent risk factors for preoperative nutritional risk in GC patients. To 

assist doctors in assessing the nutritional risk in GC patients before surgical treatment, we 

have developed a simple and repeatable nomogram clinical prediction model. This model can 

effectively guide doctors in identifying and diagnosing GC patients at nutritional risk.  
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Table 1. Characteristics of the 284 patients with gastric cancer involved in the study according to 
presence/absence of nutritional risk and randomization to training set and validation set 
 

 
NRS2002, nutritional risk screening 2002; BMI, body mass index; Hb, hemoglobin; ALB, albumin; PAB, prealbumin; NEUT, 
neutrophile count; TLC, total lymphocyte count; CEA, carcinoembryonic antigen; AFP, alpha-fetoprotein.. 
p<0.05 meant that the difference was statistically significant. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 All patients 
 N=284 

Training set 
N=198 

Validation set 
N=86 

p-value 

Gender, n (%)    0.208   
 Male 181 (63.73%)      60 (69.77%)       121 (61.11%)                
 Female 103 (36.27%)      26 (30.23%)       77 (38.89%)                
Age(years) 56.00 [46.00;63.25]  55.00 [47.00;63.75]   57.00 [46.00;63.00]  0.978   
BMI (kg/m2) 19.46 [17.74;21.51]  19.32 [17.61;22.18]   19.48 [17.91;21.02]  0.738   
NRS2002    0.463 
 <3 153 (53.87%)      110 (55.56%)      43 (50.00%)        
 ≥3 131 (46.13%)      88 (44.44%)      43 (50.00%)        
Diabetic, n (%)                                                                    0.758   
 No 272 (95.77%)      82 (95.35%)       190 (95.96%)                
 Yes 12 (4.23%)       4 (4.65%)        8 (4.04%)                 
Smoking, n (%)                                                                    0.190   
 No 186 (65.49%)      51 (59.30%)       135 (68.18%)                
 Yes 98 (34.51%)      35 (40.70%)       63 (31.82%)                
Hb(g/L) 115.90 [99.45;131.05] 114.45 [100.03;128.32] 116.75 [98.40;131.28] 0.492   
NEUT(109/L) 3.54 [2.70;4.22]    3.38 [2.75;4.38]    3.56 [2.65;4.19]    0.854   
TLC(109/L) 1.75 [1.38;2.21]    1.78 [1.31;2.17]    1.75 [1.41;2.21]    0.774   
ALB(g/L) 39.25 [36.70;41.20]  39.30 [36.30;41.10]   39.20 [36.90;41.27]  0.756   
PAB(g/L) 212.55 [180.40;256.82] 204.40 [175.00;257.40] 216.35 [182.40;256.32] 0.152   
TC(mmol/L) 4.62 [4.05;5.14]    4.58 [3.98;5.01]    4.68 [4.07;5.18]    0.394   
AFP(ng/mL) 7.87 [5.58;11.60]   7.35 [5.27;10.85]    8.16 [5.63;11.80]   0.221   
CEA(ng/mL) 2.51 [1.85;3.52]    2.50 [1.94;3.46]    2.51 [1.84;3.53]    0.896   
CA125(U/mL) 10.55 [7.58;14.64]   11.10 [7.60;16.04]   10.30 [7.56;14.20]   0.770   
CA153(U/mL) 7.87 [5.58;11.60]   7.35 [5.27;10.85]    8.19 [5.63;11.80]   0.216   
CA199(U/mL) 7.68 [4.18;17.31]   7.03 [3.75;19.56]    7.74 [4.35;16.92]   0.992   
T stage                                                                      0.651   
 T0 2 (0.70%)        0 (0.00%)        2 (1.01%)                  
 T1 59 (20.77%)       20 (23.26%)       39 (19.70%)                 
 T2 44 (15.49%)       12 (13.95%)       32 (16.16%)                 
 T3 43 (15.14%)       16 (18.60%)       27 (13.64%)                 
 T4 136 (47.89%)      38 (44.19%)       98 (49.49%)                 
N stage                                                                      0.396   
 N0 108 (38.03%)      35 (40.70%)       73 (36.87%)                 
 N1 40 (14.08%)       14 (16.28%)       26 (13.13%)                 
 N2 53 (18.66%)       11 (12.79%)       42 (21.21%)                 
 N3 83 (29.23%)       26 (30.23%)       57 (28.79%)                 
Radscore 7.73 [5.82;14.35]    7.86 [5.89;15.07]    7.73 [5.76;13.76]    0.853   
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Table 2. Univariate and multivariate logistic regression were used to screen LASSO regression predictors for 
nutritional risk 
 

 
 
 
 
 
 
 
 
 
 

 
Values were shown as means±SD. 

Characteristics Uni-B Uni-SE Uni-OR Uni-CI Uni-Z Uni-p Multi-B Multi-SE 
BMI -0.308 0.06691 0.735 0.735 

(0.640-0.833) 
-4.597 < 0.001 -0.398 0.1264 

Hb -0.059 0.00923 0.943 0.943 
(0.925-0.959) 

-6.368 < 0.001 -0.053 0.01512 

Radscore 0.546 0.07638 1.727 1.727 
(1.509-2.042) 

7.152 < 0.001 0.57 0.09055 

Characteristics Multi-OR Multi-CI Multi-Z Multi-p 
BMI 0.672 0.672 

(0.510-0.840) 
-3.15 0.002 

Hb 0.948 0.948 
(0.918-0.975) 

-3.518 < 0.001 

Radscore 1.769 1.769 
(1.511-2.165) 

6.3 < 0.001 
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Figure 1. Flow chart of study design. NRS2002, nutritional risk screening 2002; LASSO, least absolute shrinkage and selection 
operator; ROC, receiver operating characteristic; DCA, decision curve analysis. 
†p<0.05 compared with Gp1; ‡p<0.05 compared with Gp2; §p<0.05 compare with Gm1; ¶p<0.05 compared with Gm2; ††p<0.05 
compared with Gm3. 
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Figure 2. Variable selection using LASSO for binary logistic regression. (a) The optimum lambda selected twenty-one nonzero 
coefficient variables. Each line represented a parameter with a vertical coefficient at its end. (b) After validating the optimal 
parameter (lambda) in the LASSO model, the partial likelihood deviance (binomial deviance) curve was plotted against log (lambda) 
and vertical dashed lines were constructed based on 1 standard error threshold. 
 

 

 
 
Figure 3. Multivariate logistic regression created the prediction model. (a) Multivariate logistic regression analysis of nutritional risk 
predictors. (b) Nomogram for nutritional risk prediction in gastric cancer patients. OR, CI, and p values are all shown. p<0.05 
indicated a statistically significant difference. OR, odds ratio; CI, confidence interval 
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Figure 4. The ROC curve and confusion matrix for training set (a and c) and the validation set (b and d). ROC: receiver operator 
characteristic curve. AUC: area under the curve. 
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Figure 5. Nutritional risk prediction nomogram calibration curves. NRS2002 ≥ 3 cases are depicted along the y-axis, and expected 
nutritional risks are displayed along the x-axis. A closer alignment with the diagonal dotted line, which represents an ideal model's 
flawless prediction, indicates a more precise forecast, as well as the solid line representing the performance of the training set (a) and 
validation set (b). 

 

 

 
 
Figure 6. Nutritional risk nomogram decision curve analysis. The y-axis represents the net benefit. The blue solid line signifies the 
assumption that no patient is at nutritional risk, the red solid line indicates the assumption that every patient is at risk. Solid lines in 
other   colours represents the risk nomogram. (a) from the training set. (b) from the validation set. 
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Supplementary Table 1. The list of radiomic features extracted from the VOIs 
 

 Image type Feature Feature name 
F1  original shape Elongation 
F2  shape MajorAxisLength 
F3  shape Maximum Diameter 
F4  shape MeshSurface 
F5  shape MinorAxisLength 
F6  shape Perimeter 
F7  shape PerimeterSurfaceRatio 
F8  shape PixelSurface 
F9  shape Sphericity 
F10  firstorder 10Percentile 
F11  firstorder 90Percentile 
F12  firstorder Energy 
F13  firstorder Entropy 
F14  firstorder Interquartile Range 
F15  firstorder Kurtosis 
F16  firstorder Maximum 
F17  firstorder MeanAbsoluteDeviation 
F18  firstorder Mean 
F19  firstorder Median 
F20  firstorder Minimum 
F21  firstorder Range 
F22  firstorder RobustMeanAbsoluteDeviation 
F23  firstorder RootMeanSquared 
F24  firstorder Skewness 
F25  firstorder TotalEnergy 
F26  firstorder Uniformity 
F27  firstorder Variance 
F28  glcm Autocorrelation 
F29  glcm ClusterProminence 
F30  glcm ClusterShade 
F31  glcm ClusterTendency 
F32  glcm Contrast 
F33  glcm Correlation 
F34  glcm DifferenceAverage 
F35  glcm DifferenceEntropy 
F36  glcm DifferenceVariance 
F37  glcm Id 
F38  glcm Idm 
F39  glcm Idmn 
F40  glcm Idn 
F41  glcm Imc1 
F42  glcm Imc2 
F43  glcm InverseVariance 
F44  glcm JointAverage 
F45  glcm JointEnergy 
F46  glcm JointEntropy 
F47  glcm MCC 
F48  glcm MaximumProbability 
F49  glcm SumAverage 
F50  glcm SumEntropy 
F51  glcm SumSquares 
F52  gldm DependenceEntropy 
F53  gldm DependenceNonUniformity 
F54  gldm DependenceNonUniformityNormalized 
F55  gldm Dependence Variance 
F56  gldm GrayLevelNonUniformity 
F57  gldm GrayLevelVariance 
F58  gldm HighGrayLevelEmphasis 
F59  gldm LargeDependenceEmphasis 
F60  gldm LargeDependenceHighGrayLevelEmphasis 
F61  gldm LargeDependenceLowGrayLevelEmphasis 
F62  gldm LowGrayLevelEmphasis 
F63  gldm SmallDependenceEmphasis 
F64  gldm SmallDependenceHighGrayLevelEmphasis 
F65  gldm SmallDependenceLowGrayLevelEmphasis 

 
GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level sizezone matrix; GLDM, gray-
level dependence matrix; and NGTDM, neighboring gray-tone difference matrix 
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Supplementary Table 1. The list of radiomic features extracted from the VOIs (cont.) 
 

 Image type Feature Feature name 
F66  original glrlm GrayLevelNonUniformity 
F67  glrlm GrayLevelNonUniformityNormalized 
F68  glrlm GrayLevelVariance 
F69  glrlm HighGrayLevelRunEmphasis 
F70  glrlm LongRunEmphasis 
F71  glrlm LongRunHighGrayLevelEmphasis 
F72  glrlm LongRunLowGrayLevelEmphasis 
F73  glrlm LowGrayLevelRunEmphasis 
F74  glrlm RunEntropy 
F75  glrlm RunLengthNonUniformity 
F76  glrlm RunLengthNonUniformityNormalized 
F77  glrlm RunPercentage 
F78  glrlm RunVariance 
F79  glrlm ShortRunEmphasis 
F80  glrlm ShortRunHighGrayLevelEmphasis 
F81  glrlm ShortRunLowGrayLevelEmphasis 
F82  glszm GrayLevelNonUniformity 
F83  glszm GrayLevelNonUniformityNormalized 
F84  glszm GrayLevelVariance 
F85  glszm HighGrayLevelZoneEmphasis 
F86  glszm LargeAreaEmphasis 
F87  glszm LargeAreaHighGrayLevelEmphasis 
F88  glszm LargeAreaLowGrayLevelEmphasis 
F89  glszm LowGrayLevelZoneEmphasis 
F90  glszm SizeZoneNonUniformity 
F91  glszm SizeZoneNonUniformityNormalized 
F92  glszm SmallAreaEmphasis 
F93  glszm SmallAreaHighGrayLevelEmphasis 
F94  glszm SmallAreaLowGrayLevelEmphasis 
F95  glszm ZoneEntropy 
F96  glszm ZonePercentage 
F97  glszm ZoneVariance 
F98  ngtdm Busyness 
F99  ngtdm Coarseness 
F100  ngtdm Complexity 
F101  ngtdm Contrast 
F102  ngtdm Strength 
F103 gradient firstorder 10Percentile 
F104  firstorder 90Percentile 
F105  firstorder Energy 
F106  firstorder Entropy 
F107  firstorder InterquartileRange 
F108  firstorder Kurtosis 
F109  firstorder Maximum 
F110  firstorder MeanAbsoluteDeviation 
F111  firstorder Mean 
F112  firstorder Median 
F113  firstorder Minimum 
F114  firstorder Range 
F115  firstorder RobustMeanAbsoluteDeviation 
F116  firstorder RootMeanSquared 
F117  firstorder Skewness 
F118  firstorder TotalEnergy 
F119  firstorder Uniformity 
F120  firstorder Variance 
F121  glcm Autocorrelation 
F122  glcm ClusterProminence 
F123  glcm ClusterShade 
F124  glcm ClusterTendency 
F125  glcm Contrast 
F126  glcm Correlation 
F127  glcm DifferenceAverage 
F128  glcm DifferenceEntropy 
F129  glcm DifferenceVariance 
F130  glcm Id 

 
GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level sizezone matrix; GLDM, gray-
level dependence matrix; and NGTDM, neighboring gray-tone difference matrix 
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Supplementary Table 1. The list of radiomic features extracted from the VOIs (cont.) 
 

 Image type Feature Feature name 
F131 original glcm Idm 
F132  glcm Idmn 
F133  glcm Idn 
F134  glcm Imc1 
F135  glcm Imc2 
F136  glcm InverseVariance 
F137  glcm JointAverage 
F138  glcm JointEnergy 
F139  glcm JointEntropy 
F140  glcm MCC 
F141  glcm MaximumProbability 
F142  glcm SumAverage 
F143  glcm SumEntropy 
F144  glcm SumSquares 
F145  gldm DependenceEntropy 
F146  gldm DependenceNonUniformity 
F147  gldm DependenceNonUniformityNormalized 
F148  gldm Dependence Variance 
F149  gldm GrayLevelNonUniformity 
F150  gldm GrayLevelVariance 
F151  gldm HighGrayLevelEmphasis 
F152  gldm LargeDependenceEmphasis 
F153  gldm LargeDependenceHighGrayLevelEmphasis 
F154  gldm LargeDependenceLowGrayLevelEmphasis 
F155  gldm LowGrayLevelEmphasis 
F156  gldm SmallDependenceEmphasis 
F157  gldm SmallDependenceHighGrayLevelEmphasis 
F158  gldm SmallDependenceLowGrayLevelEmphasis 
F159  glrlm GrayLevelNonUniformity 
F160  glrlm GrayLevelNonUniformityNormalized 
F161  glrlm GrayLevelVariance 
F162  glrlm HighGrayLevelRunEmphasis 
F163  glrlm LongRunEmphasis 
F164  glrlm LongRunHighGrayLevelEmphasis 
F165  glrlm LongRunLowGrayLevelEmphasis 
F166  glrlm LowGrayLevelRunEmphasis 
F167  glrlm RunEntropy 
F168  glrlm RunLengthNonUniformity 
F169  glrlm RunLengthNonUniformityNormalized 
F170  glrlm RunPercentage 
F171  glrlm RunVariance 
F172  glrlm ShortRunEmphasis 
F173  glrlm ShortRunHighGrayLevelEmphasis 
F174  glrlm ShortRunLowGrayLevelEmphasis 
F175  glszm GrayLevelNonUniformity 
F176  glszm GrayLevelNonUniformityNormalized 
F177  glszm GrayLevelVariance 
F178  glszm HighGrayLevelZoneEmphasis 
F179  glszm LargeAreaEmphasis 
F180  glszm LargeAreaHighGrayLevelEmphasis 
F181  glszm LargeAreaLowGrayLevelEmphasis 
F182  glszm LowGrayLevelZoneEmphasis 
F183  glszm SizeZoneNonUniformity 
F184  glszm SizeZoneNonUniformityNormalized 
F185  glszm SmallAreaEmphasis 
F186  glszm SmallAreaHighGrayLevelEmphasis 
F187  glszm SmallAreaLowGrayLevelEmphasis 
F188  glszm ZoneEntropy 
F189  glszm ZonePercentage 
F190  glszm ZoneVariance 
F191  glszm Busyness 
F192  glszm Coarseness 
F193  glszm Complexity 
F194  glszm Contrast 
F195  glszm Strength 

 
GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level sizezone matrix; GLDM, gray-
level dependence matrix; and NGTDM, neighboring gray-tone difference matrix 
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Supplementary Table 1. The list of radiomic features extracted from the VOIs (cont.) 
 

 Image type Feature Feature name 
F196 Lbp-2D firstorder 10Percentile 
F197  firstorder 90Percentile 
F198  firstorder Energy 
F199  firstorder Entropy 
F200  firstorder InterquartileRange 
F201  firstorder Kurtosis 
F202  firstorder Maximum 
F203  firstorder MeanAbsoluteDeviation 
F204  firstorder Mean 
F205  firstorder Median 
F206  firstorder Minimum 
F207  firstorder Range 
F208  firstorder RobustMeanAbsoluteDeviation 
F209  firstorder RootMeanSquared 
F210  firstorder Skewness 
F211  firstorder TotalEnergy 
F212  firstorder Uniformity 
F213  firstorder Variance 
F214  glcm Autocorrelation 
F215  glcm ClusterProminence 
F216  glcm ClusterShade 
F217  glcm ClusterTendency 
F218  glcm Contrast 
F219  glcm Correlation 
F220  glcm DifferenceAverage 
F221  glcm DifferenceEntropy 
F222  glcm DifferenceVariance 
F223  glcm Id 
F224  glcm Idm 
F225  glcm Idmn 
F226  glcm Idn 
F227  glcm Imc1 
F228  glcm Imc2 
F229  glcm InverseVariance 
F230  glcm JointAverage 
F231  glcm JointEnergy 
F232  glcm JointEntropy 
F233  glcm MCC 
F234  glcm MaximumProbability 
F235  glcm SumAverage 
F236  glcm SumEntropy 
F237  glcm SumSquares 
F238  gldm DependenceEntropy 
F239  gldm DependenceNonUniformity 
F240  gldm DependenceNonUniformityNormalized 
F241  gldm Dependence Variance 
F242  gldm GrayLevelNonUniformity 
F243  gldm GrayLevelVariance 
F244  gldm HighGrayLevelEmphasis 
F245  gldm LargeDependenceEmphasis 
F246  gldm LargeDependenceHighGrayLevelEmphasis 
F247  gldm LargeDependenceLowGrayLevelEmphasis 
F248  gldm LowGrayLevelEmphasis 
F249  gldm SmallDependenceEmphasis 
F250  gldm SmallDependenceHighGrayLevelEmphasis 
F251  gldm SmallDependenceLowGrayLevelEmphasis 
F252  glrlm GrayLevelNonUniformity 
F253  glrlm GrayLevelNonUniformityNormalized 
F254  glrlm GrayLevelVariance 
F255  glrlm HighGrayLevelRunEmphasis 
F256  glrlm LongRunEmphasis 
F257  glrlm LongRunHighGrayLevelEmphasis 
F258  glrlm LongRunLowGrayLevelEmphasis 
F259  glrlm LowGrayLevelRunEmphasis 
F260  glrlm RunEntropy 

 
GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level sizezone matrix; GLDM, gray-
level dependence matrix; and NGTDM, neighboring gray-tone difference matrix 
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Supplementary Table 1. The list of radiomic features extracted from the VOIs (cont.) 
 

 Image type Feature Feature name 
F261  glrlm RunLengthNonUniformity 
F262  glrlm RunLengthNonUniformityNormalized 
F263  glrlm RunPercentage 
F264  glrlm RunVariance 
F265  glrlm ShortRunEmphasis 
F266  glrlm ShortRunHighGrayLevelEmphasis 
F267  glrlm ShortRunLowGrayLevelEmphasis 
F268  glszm GrayLevelNonUniformity 
F269  glszm GrayLevelNonUniformityNormalized 
F270  glszm GrayLevelVariance 
F271  glszm HighGrayLevelZoneEmphasis 
F272  glszm LargeAreaEmphasis 
F273  glszm LargeAreaHighGrayLevelEmphasis 
F274  glszm LargeAreaLowGrayLevelEmphasis 
F275  glszm LowGrayLevelZoneEmphasis 
F276  glszm SizeZoneNonUniformity 
F277  glszm SizeZoneNonUniformityNormalized 
F278  glszm SmallAreaEmphasis 
F279  glszm SmallAreaHighGrayLevelEmphasis 
F280  glszm SmallAreaLowGrayLevelEmphasis 
F281  glszm ZoneEntropy 
F282  glszm ZonePercentage 
F283  glszm ZoneVariance 
F284  ngtdm Busyness 
F285  ngtdm Coarseness 
F286  ngtdm Complexity 
F287  ngtdm Contrast 
F288  ngtdm Strength 
F289 Wavelet-LH firstorder 10Percentile 
F290  firstorder 90Percentile 
F291  firstorder Energy 
F292  firstorder Entropy 
F293  firstorder InterquartileRange 
F294  firstorder Kurtosis 
F295  firstorder Maximum 
F296  firstorder MeanAbsoluteDeviation 
F297  firstorder Mean 
F298  firstorder Median 
F299  firstorder Minimum 
F300  firstorder Range 
F301  firstorder RobustMeanAbsoluteDeviation 
F302  firstorder RootMeanSquared 
F303  firstorder Skewness 
F304  firstorder TotalEnergy 
F305  firstorder Uniformity 
F306  firstorder Variance 
F307  glcm Autocorrelation 
F308  glcm ClusterProminence 
F309  glcm ClusterShade 
F310  glcm ClusterTendency 
F311  glcm Contrast 
F312  glcm Correlation 
F313  glcm DifferenceAverage 
F314  glcm DifferenceEntropy 
F315  glcm DifferenceVariance 
F316  glcm Id 
F317  glcm Idm 
F318  glcm Idmn 
F319  glcm Idn 
F320  glcm Imc1 
F321  glcm Imc2 
F322  glcm InverseVariance 
F323  glcm JointAverage 
F324  glcm JointEnergy 
F325  glcm JointEntropy 

 
GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level sizezone matrix; GLDM, gray-
level dependence matrix; and NGTDM, neighboring gray-tone difference matrix 
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Supplementary Table 1. The list of radiomic features extracted from the VOIs (cont.) 
 

 Image type Feature Feature name 
F326  glcm MCC 
F327  glcm MaximumProbability 
F328  glcm SumAverage 
F329  glcm SumEntropy 
F330  glcm SumSquares 
F331  gldm DependenceEntropy 
F332  gldm DependenceNonUniformity 
F333  gldm DependenceNonUniformityNormalized 
F334  gldm Dependence Variance 
F335  gldm GrayLevelNonUniformity 
F336  gldm GrayLevelVariance 
F337  gldm HighGrayLevelEmphasis 
F338  gldm LargeDependenceEmphasis 
F339  gldm LargeDependenceHighGrayLevelEmphasis 
F340  gldm LargeDependenceLowGrayLevelEmphasis 
F341  gldm LowGrayLevelEmphasis 
F342  gldm SmallDependenceEmphasis 
F343  gldm SmallDependenceHighGrayLevelEmphasis 
F344  gldm SmallDependenceLowGrayLevelEmphasis 
F345  glrlm GrayLevelNonUniformity 
F346  glrlm GrayLevelNonUniformityNormalized 
F347  glrlm GrayLevelVariance 
F348  glrlm HighGrayLevelRunEmphasis 
F349  glrlm LongRunEmphasis 
F350  glrlm LongRunHighGrayLevelEmphasis 
F351  glrlm LongRunLowGrayLevelEmphasis 
F352  glrlm LowGrayLevelRunEmphasis 
F353  glrlm RunEntropy 
F354  glrlm RunLengthNonUniformity 
F355  glrlm RunLengthNonUniformityNormalized 
F356  glrlm RunPercentage 
F357  glrlm RunVariance 
F358  glrlm ShortRunEmphasis 
F359  glrlm ShortRunHighGrayLevelEmphasis 
F360  glrlm ShortRunLowGrayLevelEmphasis 
F361  glszm GrayLevelNonUniformity 
F362  glszm GrayLevelNonUniformityNormalized 
F363  glszm GrayLevelVariance 
F364  glszm HighGrayLevelZoneEmphasis 
F365  glszm LargeAreaEmphasis 
F366  glszm LargeAreaHighGrayLevelEmphasis 
F367  glszm LargeAreaLowGrayLevelEmphasis 
F368  glszm LowGrayLevelZoneEmphasis 
F369  glszm SizeZoneNonUniformity 
F370  glszm SizeZoneNonUniformityNormalized 
F371  glszm SmallAreaEmphasis 
F372  glszm SmallAreaHighGrayLevelEmphasis 
F373  glszm SmallAreaLowGrayLevelEmphasis 
F374  glszm ZoneEntropy 
F375  glszm ZonePercentage 
F376  glszm ZoneVariance 
F377  ngtdm Busyness 
F378  ngtdm Coarseness 
F379  ngtdm Complexity 
F380  ngtdm Contrast 
F381  ngtdm Strength 
F382 wavelet-HL firstorder 10Percentile 
F383  firstorder 90Percentile 
F384  firstorder Energy 
F385  firstorder Entropy 
F386  firstorder InterquartileRange 
F387  firstorder Kurtosis 
F388  firstorder Maximum 
F389  firstorder MeanAbsoluteDeviation 
F390  firstorder Mean 

 
GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level sizezone matrix; GLDM, gray-
level dependence matrix; and NGTDM, neighboring gray-tone difference matrix 
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Supplementary Table 1. The list of radiomic features extracted from the VOIs (cont.) 
 

 Image type Feature Feature name 
F391  firstorder Median 
F392  firstorder Minimum 
F393  firstorder Range 
F394  firstorder RobustMeanAbsoluteDeviation 
F395  firstorder RootMeanSquared 
F396  firstorder Skewness 
F397  firstorder TotalEnergy 
F398  firstorder Uniformity 
F399  firstorder Variance 
F400  glcm Autocorrelation 
F401  glcm ClusterProminence 
F402  glcm ClusterShade 
F403  glcm ClusterTendency 
F404  glcm Contrast 
F405  glcm Correlation 
F406  glcm DifferenceAverage 
F407  glcm DifferenceEntropy 
F408  glcm DifferenceVariance 
F409  glcm Id 
F410  glcm Idm 
F411  glcm Idmn 
F412  glcm Idn 
F413  glcm Imc1 
F414  glcm Imc2 
F415  glcm InverseVariance 
F416  glcm JointAverage 
F417  glcm JointEnergy 
F418  glcm JointEntropy 
F419  glcm MCC 
F420  glcm MaximumProbability 
F421  glcm SumAverage 
F422  glcm SumEntropy 
F423  glcm SumSquares 
F424  gldm DependenceEntropy 
F425  gldm DependenceNonUniformity 
F426  gldm DependenceNonUniformityNormalized 
F427  gldm Dependence Variance 
F428  gldm GrayLevelNonUniformity 
F429  gldm GrayLevelVariance 
F430  gldm HighGrayLevelEmphasis 
F431  gldm LargeDependenceEmphasis 
F432  gldm LargeDependenceHighGrayLevelEmphasis 
F433  gldm LargeDependenceLowGrayLevelEmphasis 
F434  gldm LowGrayLevelEmphasis 
F435  gldm SmallDependenceEmphasis 
F436  gldm SmallDependenceHighGrayLevelEmphasis 
F437  gldm SmallDependenceLowGrayLevelEmphasis 
F438  glrlm GrayLevelNonUniformity 
F439  glrlm GrayLevelNonUniformityNormalized 
F440  glrlm GrayLevelVariance 
F441  glrlm HighGrayLevelRunEmphasis 
F442  glrlm LongRunEmphasis 
F443  glrlm LongRunHighGrayLevelEmphasis 
F444  glrlm LongRunLowGrayLevelEmphasis 
F445  glrlm LowGrayLevelRunEmphasis 
F446  glrlm RunEntropy 
F447  glrlm RunLengthNonUniformity 
F448  glrlm RunLengthNonUniformityNormalized 
F449  glrlm RunPercentage 
F450  glrlm RunVariance 
F451  glrlm ShortRunEmphasis 
F452  glrlm ShortRunHighGrayLevelEmphasis 
F453  glrlm ShortRunLowGrayLevelEmphasis 
F454  glszm GrayLevelNonUniformity 
F455  glszm GrayLevelNonUniformityNormalized 

 
GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level sizezone matrix; GLDM, gray-
level dependence matrix; and NGTDM, neighboring gray-tone difference matrix 
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Supplementary Table 1. The list of radiomic features extracted from the VOIs (cont.) 
 

 Image type Feature Feature name 
F456  glszm GrayLevelVariance 
F457  glszm HighGrayLevelZoneEmphasis 
F458  glszm LargeAreaEmphasis 
F459  glszm LargeAreaHighGrayLevelEmphasis 
F460  glszm LargeAreaLowGrayLevelEmphasis 
F461  glszm LowGrayLevelZoneEmphasis 
F462  glszm SizeZoneNonUniformity 
F463  glszm SizeZoneNonUniformityNormalized 
F464  glszm SmallAreaEmphasis 
F465  glszm SmallAreaHighGrayLevelEmphasis 
F466  glszm SmallAreaLowGrayLevelEmphasis 
F467  glszm ZoneEntropy 
F468  glszm ZonePercentage 
F469  glszm ZoneVariance 
F470  ngtdm Busyness 
F471  ngtdm Coarseness 
F472  ngtdm Complexity 
F473  ngtdm Contrast 
F474  ngtdm Strength 
F475 wavelength-HH firstorder 10Percentile 
F476  firstorder 90Percentile 
F477  firstorder Energy 
F478  firstorder Entropy 
F479  firstorder InterquartileRange 
F480  firstorder Kurtosis 
F481  firstorder Maximum 
F482  firstorder MeanAbsoluteDeviation 
F483  firstorder Mean 
F484  firstorder Median 
F485  firstorder Minimum 
F486  firstorder Range 
F487  firstorder RobustMeanAbsoluteDeviation 
F488  firstorder RootMeanSquared 
F489  firstorder Skewness 
F490  firstorder TotalEnergy 
F491  firstorder Uniformity 
F492  firstorder Variance 
F493  glcm Autocorrelation 
F494  glcm ClusterProminence 
F495  glcm ClusterShade 
F496  glcm ClusterTendency 
F497  glcm Contrast 
F498  glcm Correlation 
F499  glcm DifferenceAverage 
F500  glcm DifferenceEntropy 
F501  glcm DifferenceVariance 
F502  glcm Id 
F503  glcm Idm 
F504  glcm Idmn 
F505  glcm Idn 
F506  glcm Imc1 
F507  glcm Imc2 
F508  glcm InverseVariance 
F509  glcm JointAverage 
F510  glcm JointEnergy 
F511  glcm JointEntropy 
F512  glcm MCC 
F513  glcm MaximumProbability 
F514  glcm SumAverage 
F515  glcm SumEntropy 
F516  glcm SumSquares 
F517  gldm DependenceEntropy 
F518  gldm DependenceNonUniformity 
F519  gldm DependenceNonUniformityNormalized 
F520  gldm Dependence Variance 

 
GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level sizezone matrix; GLDM, gray-
level dependence matrix; and NGTDM, neighboring gray-tone difference matrix 
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Supplementary Table 1. The list of radiomic features extracted from the VOIs (cont.) 
 

 Image type Feature Feature name 
F521  gldm GrayLevelNonUniformity 
F522  gldm GrayLevelVariance 
F523  gldm HighGrayLevelEmphasis 
F524  gldm LargeDependenceEmphasis 
F525  gldm LargeDependenceHighGrayLevelEmphasis 
F526  gldm LargeDependenceLowGrayLevelEmphasis 
F527  gldm LowGrayLevelEmphasis 
F528  gldm SmallDependenceEmphasis 
F529  gldm SmallDependenceHighGrayLevelEmphasis 
F530  gldm SmallDependenceLowGrayLevelEmphasis 
F531  glrlm GrayLevelNonUniformity 
F532  glrlm GrayLevelNonUniformityNormalized 
F533  glrlm GrayLevelVariance 
F534  glrlm HighGrayLevelRunEmphasis 
F535  glrlm LongRunEmphasis 
F536  glrlm LongRunHighGrayLevelEmphasis 
F537  glrlm LongRunLowGrayLevelEmphasis 
F538  glrlm LowGrayLevelRunEmphasis 
F539  glrlm RunEntropy 
F540  glrlm RunLengthNonUniformity 
F541  glrlm RunLengthNonUniformityNormalized 
F542  glrlm RunPercentage 
F543  glrlm RunVariance 
F544  glrlm ShortRunEmphasis 
F545  glrlm ShortRunHighGrayLevelEmphasis 
F546  glrlm ShortRunLowGrayLevelEmphasis 
F547  glszm GrayLevelNonUniformity 
F548  glszm GrayLevelNonUniformityNormalized 
F549  glszm GrayLevelVariance 
F550  glszm HighGrayLevelZoneEmphasis 
F551  glszm LargeAreaEmphasis 
F552  glszm LargeAreaHighGrayLevelEmphasis 
F553  glszm LargeAreaLowGrayLevelEmphasis 
F554  glszm LowGrayLevelZoneEmphasis 
F555  glszm SizeZoneNonUniformity 
F556  glszm SizeZoneNonUniformityNormalized 
F557  glszm SmallAreaEmphasis 
F558  glszm SmallAreaHighGrayLevelEmphasis 
F559  glszm SmallAreaLowGrayLevelEmphasis 
F560  glszm ZoneEntropy 
F561  glszm ZonePercentage 
F562  glszm ZoneVariance 
F563  ngtdm Busyness 
F564  ngtdm Coarseness 
F565  ngtdm Complexity 
F566  ngtdm Contrast 
F567  ngtdm Strength 
F568 wavelet-LL firstorder 10Percentile 
F569  firstorder 90Percentile 
F570  firstorder Energy 
F571  firstorder Entropy 
F572  firstorder InterquartileRange 
F573  firstorder Kurtosis 
F574  firstorder Maximum 
F575  firstorder MeanAbsoluteDeviation 
F576  firstorder Mean 
F577  firstorder Median 
F578  firstorder Minimum 
F579  firstorder Range 
F580  firstorder RobustMeanAbsoluteDeviation 
F581  firstorder RootMeanSquared 
F582  firstorder Skewness 
F583  firstorder TotalEnergy 
F584  firstorder Uniformity 
F585  firstorder Variance 

 
GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level sizezone matrix; GLDM, gray-
level dependence matrix; and NGTDM, neighboring gray-tone difference matrix 
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Supplementary Table 1. The list of radiomic features extracted from the VOIs (cont.) 
 

 Image type Feature Feature name 
F586  glcm Autocorrelation 
F587  glcm ClusterProminence 
F588  glcm ClusterShade 
F589  glcm ClusterTendency 
F590  glcm Contrast 
F591  glcm Correlation 
F592  glcm DifferenceAverage 
F593  glcm DifferenceEntropy 
F594  glcm DifferenceVariance 
F595  glcm Id 
F596  glcm Idm 
F597  glcm Idmn 
F598  glcm Idn 
F599  glcm Imc1 
F600  glcm Imc2 
F601  glcm InverseVariance 
F602  glcm JointAverage 
F603  glcm JointEnergy 
F604  glcm JointEntropy 
F605  glcm MCC 
F606  glcm MaximumProbability 
F607  glcm SumAverage 
F608  glcm SumEntropy 
F609  glcm SumSquares 
F610  gldm DependenceEntropy 
F611  gldm DependenceNonUniformity 
F612  gldm DependenceNonUniformityNormalized 
F613  gldm Dependence Variance 
F614  gldm GrayLevelNonUniformity 
F615  gldm GrayLevelVariance 
F616  gldm HighGrayLevelEmphasis 
F617  gldm LargeDependenceEmphasis 
F618  gldm LargeDependenceHighGrayLevelEmphasis 
F619  gldm LargeDependenceLowGrayLevelEmphasis 
F620  gldm LowGrayLevelEmphasis 
F621  gldm SmallDependenceEmphasis 
F622  gldm SmallDependenceHighGrayLevelEmphasis 
F623  gldm SmallDependenceLowGrayLevelEmphasis 
F624  glrlm GrayLevelNonUniformity 
F625  glrlm GrayLevelNonUniformityNormalized 
F626  glrlm GrayLevelVariance 
F627  glrlm HighGrayLevelRunEmphasis 
F628  glrlm LongRunEmphasis 
F629  glrlm LongRunHighGrayLevelEmphasis 
F630  glrlm LongRunLowGrayLevelEmphasis 
F631  glrlm LowGrayLevelRunEmphasis 
F632  glrlm RunEntropy 
F633  glrlm RunLengthNonUniformity 
F634  glrlm RunLengthNonUniformityNormalized 
F635  glrlm RunPercentage 
F636  glrlm RunVariance 
F637  glrlm ShortRunEmphasis 
F638  glrlm ShortRunHighGrayLevelEmphasis 
F639  glrlm ShortRunLowGrayLevelEmphasis 
F640  glszm GrayLevelNonUniformity 
F641  glszm GrayLevelNonUniformityNormalized 
F642  glszm GrayLevelVariance 
F643  glszm HighGrayLevelZoneEmphasis 
F644  glszm LargeAreaEmphasis 
F645  glszm LargeAreaHighGrayLevelEmphasis 
F646  glszm LargeAreaLowGrayLevelEmphasis 
F647  glszm LowGrayLevelZoneEmphasis 
F648  glszm SizeZoneNonUniformity 
F649  glszm SizeZoneNonUniformityNormalized 
F650  glszm SmallAreaEmphasis 

 
GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level sizezone matrix; GLDM, gray-
level dependence matrix; and NGTDM, neighboring gray-tone difference matrix 
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Supplementary Table 1. The list of radiomic features extracted from the VOIs (cont.) 
 

 Image type Feature Feature name 
F651  glszm SmallAreaHighGrayLevelEmphasis 
F652  glszm SmallAreaLowGrayLevelEmphasis 
F653  glszm ZoneEntropy 
F654  glszm ZonePercentage 
F655  glszm ZoneVariance 
F656  ngtdm Busyness 
F657  ngtdm Coarseness 
F658  ngtdm Complexity 
F659  ngtdm Contrast 
F660  ngtdm Strength 

 
GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level sizezone matrix; GLDM, gray-
level dependence matrix; and NGTDM, neighboring gray-tone difference matrix 
 
 
 
 
Supplementary Table 2. The radiomics features selected by LASSO regression analysis 
 

Radiomics features Coefficients 
gradient_glcm_lmc2 0.04341 
gradient_glrlm_LowGrayLevelRunEmphasis 0.01522 
gradient_glszm_SmallAreaLowGrayLevelEmphasis 0.03121 
gradient_ngtdm_Coarseness 0.024431 
wavelet-LH_gldm_SmallDependenceLowGrayLevelEmphasis 0.019694 
wavelet-LL_glszm_SmallAreaLowGrayLevelEmphasis 0.005178 

 
GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level sizezone matrix; GLDM, gray-
level dependence matrix; and NGTDM, neighboring gray-tone difference matrix 
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Supplementary Table 3. Characteristics of 284 gastric cancer patients enrolled in the study according to the 
NRS2002 score 
 

 
BMI, body mass index; HB, hemoglobin; ALB, albumin; PAB, prealbumin; NEUT, neutrophile count; TLC, total lymphocyte count; 
CEA, carcinoembryonic antigen; AFP, alpha-fetoprotein. 
p<0.05 meant that the difference was statistically significant. 
 

 All patients 
 N=284 

Training set 
N=198 

Validation set 
N=86 

p-value 

Gender, n (%)    0.137   
 Male 181 (63.73%) 91 (59.48%) 90 (68.70%)           
 Female 103 (36.27%) 62 (40.52%) 41 (31.30%)           
Age(years) 56.00 [46.00;63.25] 55.00 [46.00;62.00] 57.00 [46.50;65.00] 0.145 
BMI (kg/m2) 19.46 [17.74;21.51] 19.77 [18.83;22.98] 18.65 [16.64;20.07] <0.001 
Diabetic, n (%)                         0.540 
 No 272 (95.77%) 145 (94.77%) 127 (96.95%)           
 Yes 12 (4.23%) 8 (5.23%) 4 (3.05%)           
Smoking, n (%)                         0.860  
 No 186 (65.49%) 99 (64.71%) 87 (66.41%)           
 Yes 98 (34.51%) 54 (35.29%) 44 (33.59%)           
Hb(g/L) 115.90 [99.45;131.05] 126.00 [114.00;139.30] 103.00 [87.95;115.90] <0.001 
NEUT(109/L) 3.54 [2.70;4.22] 3.56 [2.81;4.19] 3.42 [2.52;4.34] 0.519 
TLC(109/L) 1.75 [1.38;2.21] 1.91 [1.47;2.29] 1.68 [1.26;1.94] <0.001 
ALB(g/L) 39.25 [36.70;41.20] 39.80 [37.70;41.50] 37.80 [34.45;40.70] <0.001 
PAB(g/L) 212.55 [180.40;256.82] 206.90 [180.50;250.60] 217.00 [179.70;270.00] 0.370 
TC(mmol/L) 4.62 [4.05;5.14] 4.77 [4.24;5.18] 4.52 [3.88;5.02] 0.004 
AFP(ng/mL) 7.87 [5.58;11.60] 7.84 [5.50;11.78] 7.90 [5.60;11.10] 0.907 
CEA(ng/mL) 2.51 [1.85;3.52] 2.75 [1.89;3.46] 2.41 [1.71;3.52] 0.179 
CA125(U/mL) 10.55 [7.58;14.64] 10.17 [7.30;13.42] 11.63 [8.00;17.80] 0.010 
CA153(U/mL) 7.87 [5.58;11.60] 7.84 [5.50;11.78] 7.90 [5.60;11.10] 0.916 
CA199(U/mL) 7.68 [4.18;17.31] 6.93 [4.23;16.58] 9.20 [3.63;18.60] 0.626 
T stage                          0.667 
 T0 2 (0.70%) 2 (1.31%) 0 (0.00%)           
 T1 59 (20.77%) 32 (20.92%) 27 (20.61%)           
 T2 44 (15.49%) 23 (15.03%) 21 (16.03%)           
 T3 43 (15.14%) 20 (13.07%) 23 (17.56%)           
 T4 136 (47.89%) 76 (49.67%) 60 (45.80%)           
N stage                          0.372 
 N0 108 (38.03%) 60 (39.22%) 48 (36.64%)           
 N1 40 (14.08%) 17 (11.11%) 23 (17.56%)           
 N2 53 (18.66%) 32 (20.92%) 21 (16.03%)           
 N3 83 (29.23%) 44 (28.76%) 39 (29.77%)           
Radscore 7.73 [5.82;14.35]    6.06 [4.87;7.42]  15.07 [9.36;16.83] <0.001 
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Supplementary Figure 1. Radiomic features selection using the LASSO logistic regression model. (a) LASSO coefficient profiles 
of the 102 radiomics features. The coefficients (y-axis) were plotted against the log (lambda), and the radiomics signature was 
constructed utilizing the selected 6 radiomic features with non-zero coefficients. (b) Plotting the partial likelihood deviance against 
log (lambda). The lower x-axis indicate the log (lambda). The y-axis denotes the partial likelihood of deviance. Utilizing the 
minimum criteria, vertical lines (dotted) were created at the optimal values. The minimum criteria-based 10-fold cross-validation 
was utilized for the selection of the tuning parameter (λ) in the LASSO model. 
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Supplementary Figure 2. Abdominal computed tomography images of the third lumbar vertebra level in four patients with gastric 
cancer. Patients with NRS2002 scores ˂3 (a and b). Patients with NRS2002 scores ≥3 (c and d) 
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Supplementary Figure 3. Validation and comparison of clinical, radiomics and combined models. The receiver operator 
characteristic curve for training set (a) and the validation set (b). The calibration curves for training set (c) and the validation set (d). 
The decision curve analysis for training set (c) and the validation set (f). 


