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Background and Objectives: To optimize the pretreatment method of colorectal cancer tissue samples for 
metabolomics research based on solid-phase nuclear magnetic resonance (NMR). Methods and Study Design: 
The mucosal tissues of colorectal cancer were classified into five groups with a volume of 0.2 cm*0.2 cm*0.2 cm. 
The pretreatment methods for each group were as follows: I. Preservation with liquid nitrogen alone. Samples 
were also treated with liquid nitrogen for 10 (II), 20 (III), and 30 min (IV), respectively, immediately after isola-
tion and then transferred to a -80℃ refrigerator; V. Only -80℃ refrigerator storage. No more than 30 minutes 
should pass between isolation and pretreatment of tumor samples. The tissue sample testing process was carried 
out on Bruker AVII-600 NMR Spectrometer. NMR signals were collected and analysed using partial least-
squares discrimination analysis (PLS-DA) to explore the effects of different pretreatment methods on the meta-
bolic changes of samples. Results: The levels of pelargonic acid, stearic acid, D-Ribose, heptadecanoic acid, py-
ruvic acid, succinate, sarcosine, glycine, creatine, and L-lactate in the group I (only liquid nitrogen) were signifi-
cantly lower than the other groups (p<0.05); the content of glycerophosphocholine in the group I (only liquid ni-
trogen) was lower than that in the other groups (p=0.055). These indicated that the glucose and choline phospho-
lipid metabolism levels of the liquid nitrogen group were significantly lower than those of the other four groups. 
Conclusions: Liquid nitrogen storage can stop the metabolic process of glucose and choline phospholipid in col-
orectal cancer tissue samples in vitro, thus maintaining the metabolic state of tissue samples in vivo as much as 
possible. 
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INTRODUCTION 
Metabolomics is a high-throughput technique for investi-
gating metabolites in human tissues and fluids. The meta-
bolic characteristics of the tissue/fluid at a specific time 
point are called “metabolic fingerprint”. Pattern recogni-
tion can be used for processing metabolic fingerprints and 
selecting biomolecules for disease diagnostics or treat-
ment. These biomolecule sets are also called “metabo-
lome”.1 Metabolome plays an important role in the diag-
nosis and treatment of many diseases, such as cancer, 
critical illness, etc. Much cancer research has been con-
ducted based on metabolomics, such as the prediction of 
cancer stage, the monitoring of metastasis, the prediction 
of chemotherapy sensitivity, the assessment of drug effi- 

 
 
cacy and the evaluation of toxicity.2-19 Common detection 
techniques in metabolomics include nuclear magnetic 
resonance (NMR) and mass spectrometry (MS). The ad-
vantages of NMR are that the pretreatment of samples is  
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very simple and the testing is non-destructive,20-21 making 
it more suitable for clinical research. In addition, NMR 
equipped with a high resolution-magic angle spinning 
probe (HR-MAS)22 can be used for the analysis of intact 
tissue samples, which can be met by small samples ob-
tained via surgery23-25 or needle aspiration biopsy.26-27   

Colorectal cancer is the third most common cancer in 
the world and the second most common cause of death 
from cancer.28-29 It is of great significance to establish a 
metabolic model of colorectal cancer for precision treat-
ment.30-33 It is well known that the metabolic rate of tu-
mor cells is significantly higher than the normal ones. 
Ideally, tissue metabolic research should provide a real-
time “snap shot” of tissues when they were resected. In 
the current pretreatment protocol of resected tissue, there 
is a time interval between sample harvest and detection. 
The metabolic processes would not stop in resected can-
cer tissue until its deep frozen. This kind of delay in pre-
treatment may lead to changes in metabolic state, and the 
information obtained from detection cannot represent its 
“in vivo” status. This is because various enzymatic reac-
tions in cells lead to changes in metabolic characteristics 
of tissues.34 Therefore, the key to ensure the quality of 
samples is to avoid the freezing delay and use a reasona-
ble sample pretreatment method. Some researchers have 
discussed and analyzed the concept of freezing delay time. 
They proposed that delayed freezing leads to metabolic 
changes, and the effect on the metabolic activity of breast 
cancer within 60 minutes after being isolated from the 
body is acceptable.34 In terms of sample pretreatment 
methods, most researchers choose liquid nitrogen storage, 
-80℃ storage, or both based on their experience.35-41 The 
metabolic characteristics of colorectal cancer are different 
from those of breast cancer, and the biological behaviors 
between them are also distinctive. In this study, we aim to 
explore the comparison of various pretreatment methods 
based on HR-MAS-MRS technology for colorectal cancer. 
 
METHODS 
This was a prospective clinical cohort investigation, and 
the research protocol included in this was approved by the 
Ethics Committee of Sichuan Academy of Medical Sci-
ences & Sichuan Provincial People's Hospital [2019-202]. 
The clinical trial’s registration number is 
ChiCTR1900024640. All enrolled patients were required 
to sign an informed consent form. 

 
Inclusion and exclusion criteria 
All patients underwent planned surgery at Sichuan Pro-
vincial People’s Hospital, and the primary cancer nest 
was completely removed. 

The inclusion criteria were as follows: 1) colorectal 
cancer; 2) clinical stage cT3NxMx-cT4NxMx; and 3) age 
18-80 years.  

Exclusion criteria were: 1) severe heart, liver, kidney, 
and hematopoietic diseases; 2) history of metabolic and 
endocrine diseases such as diabetes and hyperthyroidism; 
3) pregnancy or lactation; 4) mental illness leading to 
inability to cooperate with treatment, psychotic illness, 
lack of self-control, and inability to express clearly; 5) 
participation in other clinical trials; and 6) not signing 
informed consent. 

Sample collection 
The mucosal tissues of colorectal cancer were divided 
into five groups with a volume of 0.2 cm*0.2 cm*0.2 cm 
and put in cryotubes numbered as (A1, A2, A3, A4, A5) 
(B1, B2, B3, B4, B5), etc... The tissue samples were pro-
cessed in the following ways:  

I. Stored in liquid nitrogen immediately after they were 
resected;  

II. Transferred to the -80℃ refrigerator after storage in 
liquid nitrogen for 10 minutes;  

III. Transferred to the -80℃ refrigerator after storage 
in liquid nitrogen for 20 minutes;  

IV. Transferred to the -80℃ refrigerator after storage 
in liquid nitrogen for 30 minutes;  

V. Stored in the -80℃ refrigerator immediately after 
they were resected. 

 
NMR experiment 
All samples were clipped with a sterile blade and put into 
a 4-mm zirconium OD rotor (the entire sample volume is 
50 µl, and the average weight is 8.8mg); then, 10 µl D2O 
was added to the vessel for locking and shimming.42-45 

The testing process was carried out on a Bruker AVII-
600 spectrometer at 20℃, which was equipped with a 
1H/13C magic-angle spinning high-resolution probe 
(Bruker Company, Switzerland). The rotor, which con-
tained the tumor tissue sample, was inserted into the 
NMR instrument, and the instrument ran at the speed of 
5000 Hz for 10 minutes at room temperature. This in-
strument collected the NMR signals in the form of a spec-
trum and generated a document to record it. The detailed 
testing parameters were as follows: center frequency was 
600.11 MHz, sampling spectrum width was 20 parts per 
million (ppm), accumulation times was 64 times, pre-
saturation excitation pulse zgpr, excitation intensity was 5 
microseconds (18 watts), and the pre-saturation power 
was 1.8*10-5 watts for water signal. In this testing pro-
cess, the sampling interval was 5 seconds. 

 
NMR data analysis 
The collected NMR signal data were imported into Mes-
tReNova software (version 6.1.0, Mestrelab Research SL, 
Spain), which can show a one-dimensional NMR spec-
trum through Fourier transform; the ppms from 0.13 to 
8.99 was segmented in units of 0.01 ppm to obtain 896 
chemical shift segments. Finally, we integrated each 
chemical shift segment to obtain the corresponding inte-
gral value for the purpose of converting the spectrum sig-
nal to a digital signal.  

Subsequently, we imported the data matrix into 
MATLAB R2013b (Mathworks, USA), and the partial 
least-squares discriminant analysis (PLS-DA) was used to 
reduce data dimensionality.  

The variable importance in the projection (VIP) of the 
PLS-DA model, with corresponding chemical shifts, was 
calculated. Chemical shifts with VIP values >1 and 
p<0.05 were selected, and corresponding metabolites 
were investigated using the human metabolome database 
(HMDB, https://hmdb.ca/). Finally, the up or down of 
regulated metabolites and disturbed pathways were visu-
alized.49 All data were not normalized and scaled. 
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Statistical analysis 
Continuous variables are presented as either mean (stand-
ard deviation) or median (interquartile range), whereas 
categorical variables are presented as frequencies and 
percentages. 

For continuous variables that were normally distributed, 
we used Student t-tests; whereas, for skewed data, we 
used the Kruskal-Wallis test. Categorical data were ana-
lyzed using the chi-squared and Fisher exact probability 
tests. For evaluation of the consistency between different 
diagnostic criteria, the kappa test was used. The signifi-
cance level was set at 0.05. All analyses were conducted 
using IBM SPSS Statistics for Windows, Version 21.0 
(IBM Corp, Armonk, NY, USA). 
 
RESULTS 
Patients and clinical assessments 
The basic characteristics of patients are shown in Table 1. 
Of 20 patients were enrolled in the study, 8 was diag-
nosed with ascending colon cancer, 6 had sigmoid colon 
cancer, and 6 had rectal cancer. Most of the patients were 
elderly, and their BMI fluctuated within the normal range.  
 
Differences in metabolomics among five groups 
As shown in Figure 1, the effect of different pretreatment 

methods on the metabolic status of samples was signifi-
cant.  

Further analysis demonstrated that there were 60 ppms 
with VIP>1, and 11 characteristic metabolites related to 
different metabolic pathways were identified (Table 2). 
As shown in Figure 2, the relative amounts of nonanoic 
acid, octadecanoic acid, ribose, heptadecanoic acid, py-
ruvate, succinic acid, sarcosine, glycine, creatine, and 
lactic acid in the group I (only liquid nitrogen group) 
were significantly lower than those in the other four 
groups (p˂0.05). Although statistically insignificant, the 
content of glycerophosphocholine in the liquid nitrogen 
group was lower than in the other four groups (p=0.055). 
There was no significant difference among the group II, 
III, IV and V.  
 
Metabolic network 
To investigate the relationships among differentially rep-
resented metabolites, a correlation network diagram was 
constructed (Figure 3). The glucose and choline phospho-
lipid metabolism levels of the liquid nitrogen group were 
significantly decreased compared to those in the other 
four groups. 

 
Table 1. Demographic and baseline characteristics of the study population 
 
Cancer species Male/Female (n/n) Age (years) BMI (kg/m2) 
Ascending colon cancer (n=8) 4/4 64.6±10.6 22.2±2.63 
Sigmoid colon cancer (n=6) 4/2 76.8±6.08 21.25±4.7 
Rectal cancer (n=6) 4/2 59.2±13.2 23.6±2.15 
 
BMI: body mass index. 
 

 
 
Figure 1. PLS-DA of different pretreatment methods.                                                                                                                                                                                                                       
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Table 2. The relative content of metabolites 
 
PPM Metabolites I II III IV V p 
1.28 Pelargonic acid 68.8±9.85 80.9±10.9 78.4±10.3 79.6±10.4 83.6±8.90 0.018 
1.8 Stearic acid 33.4±1.86 35.5±3.17 37.6±2.91 36.3±2.10 37.3±4.29 0.005 
2.21 D-Ribose 34.6±2.27 37.7±2.76 38.1±2.84 37.6±2.24 36.6±2.84 0 
2.3 Heptadecanoic acid 30.5±1.92 33.4±2.93 34.4±1.78 33.4±2.39 34.6±1.73 0 
2.46 Pyruvic acid 25.0±1.24 26.00±1.29 26.4±0.83 26.0±0.94 26.5±0.85 0.009 
2.6 Succinate 26.3±1.00 27.2±1.15 27.6±1.29 27.4±0.97 28.1±1.48 0.002 
3.2 Glycerophosphocholine  61.4±5.86 71.9±14.5 72.8±4.53 74.7±14.9 71.6±3.87 0.055 
3.6 Sarcosine 34.0±4.12 40.4±9.64 44.1±17.6 42.2±17.8 51.6±30.9 0.049 
3.54 Glycine 34.5±4.38 37.5±7.08 40.0±7.21 37.9±5.56 42.2±7.76 0.042 
3.92 Creatine 33.7±3.14 37.7±4.31 39.4±4.79 38.1±5.22 40.8±5.40 0.005 
4.08 L-Lactate 28.0±2.81 30.6±3.50 31.9±2.69 30.8±3.88 32.4±3.34 0.003 
 
PPM: Parts Per Million. 
 
 

 
 
Figure 2. Metabolite levels in different groups.  
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DISCUSSION 
After decades of development, metabolomics is now 
widely used in clinical research. In particular, solid-phase 
NMR has become a common research tool used by clini-
cal researchers to obtain accurate information from tissue 
samples.   

Collecting possible metabolic information from tissue 
samples in vivo is the key to good metabolomics research. 
However, due to the sample pre-processing and transit 
required, it is usually impossible to perform NMR testing 
immediately after the tissue sample separation. Generally, 
the metabolic processes continue after the tissue samples 
are removed from the body, and metabolic levels are af-
fected by the sample storage mode. Therefore, tissue 
samples must be temporarily stored under conditions that 
minimize the loss of tissue metabolic information and 
diminish the changes in metabolic state. Inappropriate 
pretreatment methods of tissue samples may change the 
metabolic information in vivo, resulting in the acquisition 
of wrong metabolic information by NMR testing, which 
would greatly affect the results and even cause trial fail-
ure. Therefore, we tried to identify the optimal pretreat-
ment method for colorectal tissue samples in this research. 

Glucose is the main source of energy for cell metabo-
lism. It is mainly supplied via three metabolic pathways: 
glycogen synthesis, glycolysis, and pentose phosphate 
(PPP).50 The carbohydrate metabolism process of cancer 
cells is different from that of normal tissue cells, and their 
rapid division and proliferation make cancer cells prefer 
glucose as energy supply material. Cancer cells have ex-
tremely fewer organelles and are unable to carry out 
complex biochemical reactions. In the process of carbo-
hydrate metabolism in cancer cells, the main metabolic 
mode is called Warburg effect, also known as aerobic 
glycolysis.51-53 The level of pyruvic acid and L-lactate, as 
the downstream metabolites of glucose metabolism, could 
reflect the speed of glucose metabolism. When the tissue 
samples are in vivo, glucose metabolism is underway all 
the time. But after removal from the body, this metabolic 

process continues or changes to produce some metabo-
lites, which are irrelevant to metabolic information in 
vivo. In this research, we found that the levels of pyruvic 
acid and L-lactate were lower in the liquid nitrogen group 
than those in the other groups. As can be seen in Figure 3, 
pyruvic acid and L-lactate are downstream metabolites of 
glucose metabolism, indicating that pyruvic acid and L-
lactate are produced continuously along with glucose me-
tabolism after in vivo, and the speed of pyruvic acid and 
L-lactate production in those samples stored in liquid 
nitrogen was slower than that of those in the other groups. 
We can therefore conclude that the speed of glucose me-
tabolism in liquid nitrogen is slower than that of those 
seen in the other groups.  

As the core metabolite of choline phospholipid metabo-
lism, choline also had a higher level in the liquid nitrogen 
than the other groups. It is known that choline continues 
to decrease as choline phospholipid metabolism progress-
es. We found that the level of glycerophosphocholine in 
the liquid nitrogen group is the lowest among all groups, 
implying that the speed of choline consumption in liquid 
nitrogen is the slowest. We can conclude that liquid ni-
trogen storage could slow down the rate or even stop cho-
line phospholipid metabolism.54-56 

In addition, we also found that the levels of nonanoic 
acid, octadecanoic acid, heptadecanoic acid, and ribose in 
the liquid nitrogen group were significantly different from 
those of the other four groups. Relevant literature findings 
showed that these compounds are related to the metabolic 
pathway of putrefaction. However, the specific pathway 
has not been described in the literature. Based on the ex-
isting research data, we can make the following specula-
tions: nonanoic acid, octadecanoic acid, heptadecanoic 
acid, and ribose may be related to the corruption process 
of the tissue samples after in vivo. Liquid nitrogen can 
stop not only the internal metabolic process of the cell but 
also bacterial-related corruption. Specific metabolic pro-
cesses, specific mechanisms, and pathways need to be 
studied after the availability of relevant research.57-59 

 
Figure 3. Metabolic network of significantly altered metabolites. *Significantly different metabolic pathways. 
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We manually screened 11 compounds with significant 
differences. However, there are 60 compounds with a VIP 
value greater than 1, and other compounds too may play 
important roles in different pathways.  

Although we obtained much useful information from 
this research, the following limitations are noted. The 
sample size of our study was not large; thus, the results 
can only be used as a catalyst for methodological innova-
tion. There was no statistical difference in the changes of 
most metabolites. Therefore, only if the sample size is 
expanded in the future can we continue to explore the 
metabolic discipline of related metabolites and conse-
quently explain the corruption of metabolic pathways. 

 
Conclusion 
Storing tissue samples in liquid nitrogen immediately 
after removal can stop their glucose metabolism and cho-
line phospholipid metabolism. Among the pretreatment 
protocols we tested in this research, the loss of metabolic 
information from tissue samples stored in liquid nitrogen 
was the minimal, and the impact was also minimal. In 
conclusion, storing resected colorectal cancer tissue sam-
ples directly into liquid nitrogen can preserve in vivo 
metabolomic information. We recommend it as a stand-
ardized pretreatment procedure for clinical tissue samples 
for HR-MAS-MRS research. 
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