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Background and Objectives: Inflammatory cytokines and metabolic abnormalities are common in patients with 
tuberculosis. Observational studies have indicated that probiotics modulate inflammatory cytokines and metabo-
lites; however, clinical evidence of the effect of probiotics on patients with tuberculosis is lacking. This study in-
vestigated the effects of Lactobacillus casei on inflammatory cytokines and metabolites during tuberculosis 
treatment. Methods and Study Design: A randomized controlled trial was conducted. A total of 47 inpatients 
were included and randomly assigned to receive standard antituberculosis therapy only (control group) or that 
treatment together with 1 × 1010 colony-forming units per day of Lactobacillus casei (low-dose group) or 2 × 1010 
colony-forming units per day of Lactobacillus casei (high-dose group) for 4 weeks of intensive treatment during 
hospitalization. Plasma samples were analyzed for inflammatory cytokines and metabolomics with ELISA kits 
and ultrahigh performance liquid chromatography quadrupole time-of-flight mass spectrometry. Results: Daily 
Lactobacillus casei supplementation of up to 2 × 1010 colony-forming units significantly lowered the concentra-
tions of tumor necrosis factor-α, interleukin-6, interleukin-10, and interleukin-12 (p=0.007, p=0.042, p=0.002, 
p<0.001, respectively) in patients with tuberculosis. Compared with the control and low-dose groups, the plasma 
metabolites of phosphatidylserine, maresin 1, phosphatidylcholine, L-saccharopine, and pyridoxamine were sig-
nificantly upregulated, and N-acetylmethionine, L-tryptophan, phosphatidylethanolamine, and phenylalanine 
were downregulated in the high-dose group. Strong correlations were observed between metabolites and inflam-
matory cytokines. Conclusions: Lactobacillus casei supplementation during the intensive phase of tuberculosis 
treatment can significantly modulate inflammatory cytokines and metabolites. Decreased inflammatory cytokines 
may be related to metabolite changes. 
 

Key Words: probiotics, tuberculosis, inflammatory cytokines, metabolites, randomized controlled trial 
 
 
 
INTRODUCTION 
Pulmonary tuberculosis (TB) is a disease caused by the 
bacterium Mycobacterium tuberculosis. The global TB 
burden was approximately 10 million, and the mortality 
was approximately 1.2 million in 2019.1 China also has a 
high TB burden; in 2019, 833,000 people were diagnosed 
with TB, and 31,000 patients died of it.1  

Currently, a combination of four first-line antimyco-
bacterial drugs (isoniazid, rifampicin, ethambutol, and 
pyrazinamide) are used to treat TB clinically.2 All four 
drugs are prescribed to patients during the intensive 
phase—the first 2 months of TB treatment.3 Clinical 
treatment generally produces favorable therapeutic effects. 
However, inflammatory cytokines and an individual’s 
metabolic profile can be altered after an infection of M. 
tuberculosis.4,5 Studies have indicated that compared with 
healthy individuals, those with TB exhibit significantly 
higher mRNA expressions of tumor necrosis factor-α 
(TNF-α) and interleukin-6 (IL-6).6 Additionally, studies 
on systemic metabolites have indicated that the abun-
dance of tryptophan, alanine, phosphatidylcholine  

 
 
(PC), and phosphatidylethanolamine (PE) are altered in 
patients with TB, compared with healthy individuals.5 

Nutritional approaches are available to improve 
health.7,8 Probiotics are defined as “live microorganisms 
that when administered in adequate amounts, confer a 
health benefit on the host.”8 Several studies have indicat-
ed that the consumption of probiotics can regulate metab-
olites.9,10 Supplementation with probiotics, including Lac-
tobacillus casei (L. casei; 7 × 109 colony-forming units 
[CFU] per day), can regulate an individual’s plasma met-
abolic profile and increase total plasma glutathione.11  

Additionally, probiotics can reduce the concentrations 
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of anti-inflammatory cytokines.12 Studies have indicated 
that metabolites are related to inflammatory cytokines.13 
However, an extensive literature search indicated that no 
studies have focused on the effects of probiotics on the 
plasma inflammatory cytokines and metabolites of pa-
tients receiving TB treatment. 

L. casei is a safe, well-understood probiotic species 
with the approval and recognition of the United States 
Food and Drug Administration. L. casei provides health-
promoting effects, including improving gastrointestinal 
dysfunction, preventing colorectal tumors, and suppress-
ing cholestasis-related liver indices.14-16 This study in-
volved a post hoc randomized controlled trial (RCT) to 
examine the effects of L. casei on the plasma inflammato-
ry cytokines and metabolites of patients with TB during 
intensive treatment. Correlations between inflammatory 
cytokines and metabolites were also explored. 
 
METHODS 
Study design and participants 
This RCT was conducted with hospitalized adult patients 
at a chest hospital in Shandong, China, from December 
2017 to January 2019. A total of 429 patients with TB 
were enrolled in the trial; 10 patients withdrew, 9 patients 
presented adverse gastrointestinal symptoms, and 13 pa-
tients were lost to follow-up (Figure 1). Because of the 
low availability of plasma samples, inflammatory cyto-
kines and metabolomics were measured in 47 patients, 
who were simple-randomly allocated to three groups. A 
total of 16 patients were included in the low-dose L. casei 
group (1 × 1010 CFU daily), 16 in the high-dose L. casei 
group (2 × 1010 CFU daily), and 15 in the control group 
(without L. casei intervention). All patients received TB 
treatment during the 4 weeks of supplementation. 

The trial was performed in accordance with the Decla-

ration of Helsinki, approved by the Ethics Committee of 
Qingdao Center of Disease Control and Prevention 
(201703), and registered at the China Clinical Trial Reg-
istry Center (ChiCTR-IOR-17013210). All participants 
provided written informed consent and permission to use 
their blood samples for this study. 

 
Diagnostic criteria 
The inclusion criteria were age 18–65 years, agreement to 
participate and provide written consent, and a diagnosis 
of pulmonary TB, which was based on compatible clini-
cal symptoms (e.g., cough, hemoptysis, weight loss, fever, 
and night sweat) with a computed tomography scan and 
sputum smear test, as recommended by the WHO,17 at 
clinical examination. The exclusion criteria were a diag-
nosis of extrapulmonary TB (e.g., enterophthisis and bone 
TB); self-reported cardiovascular disease, diabetes, hema-
tological disease, gastrointestinal disease, liver malfunc-
tion, tumor, severe mental or psychological illness, or 
cognitive impairment; the use of probiotic supplementa-
tion within the previous 2 months; or incomplete infor-
mation. 

 
Randomization and intervention 
All participants were inpatients during the first 4 weeks of 
supplementation. They received standard TB treatment 
with a combination of four antibiotics (isoniazid, rifam-
picin, ethambutol, pyrazinamide) and were randomly al-
located to three groups. The allocation sequence was gen-
erated by an independent investigator using an online 
randomization generator (http://www.randomization.com). 
The study was an open-label randomized controlled study, 
and allocation was unmasked. 

The L. casei was prepared in liquid through a commer-
cial probiotic drink from Yakult Corporation (Tokyo, 

 

 
 
Figure 1. The trial flow chart. 
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Japan). The probiotic drink contained the L. casei strain 
Shirota, filtered water, skimmed milk powder, glucose, 
and sucrose. Each bottle (100 mL) provided approximate-
ly 10 billion CFU of L. casei Shirota, 68.5 kcal of energy, 
1.2 g of protein, and 15.7 g of carbohydrates. The probi-
otic drinks were allocated to patients twice per month. 
Patients were instructed to shake the bottles before con-
sumption and consume the L. casei 30–60 min after meals. 
The first-month intervention was conducted during the 
patients’ hospitalization period. Compliance was assessed 
through personal interviews and returned empty bottles. 

 
Data collection and plasma treatment 
In the baseline clinical assessment, participants’ demo-
graphic information was collected, their clinical symp-
toms were assessed, and they underwent chest radiog-
raphy; moreover, sputum and blood samples were col-
lected. The blood samples were used to determine the 
white blood cell differential count (Medical Record) and 
cytokines concentrations (ABclonal Technology’s ELISA 
kits; Wuhan, China). Symptoms and signs were recorded 
using a standard questionnaire to calculate TBscores be-
fore antituberculosis therapy. TBscore can be used to 
quantify the severity of TB and the included symptoms 
and signs were cough, hemoptysis, sputum production, 
dyspnea, chest pain, night sweat, fatigue, loss of appetite, 
fever and BMI.18 Presence of each of the first 9 symptoms 
and signs scored 1 point. A BMI of less than 16 kg/m2 
scored 2 points, 16-18 kg/m2 scored 1 point, more than 18 
kg/m2 scored 0 point. The range of TBscore was 0–11 
points. 

For the ultrahigh performance liquid chromatography 
quadrupole time-of-flight mass spectrometry (UHPLC Q-
TOF LC/MS) analysis, 50 μL of the plasma sample from 
each patient was transferred to an EP tube and mixed with 
250 μL of prechilled acetonitrile. The mixture was then 
vortexed for 1 min, incubated on ice for 15 min, and cen-
trifuged at 15,000 rpm for 15 min at 4°C. A total of 100 
μL of supernatant was removed and filtered with a 0.22-
μm organic filter membrane for UHPLC Q-TOF LC/MS 
analysis. 

 
UHPLC Q-TOF LC/MS 
UHPLC Q-TOF LC/MS analysis was performed on the 
metabolites in the plasma samples using Agilent 1290 
Infinity II—UHPLC (Agilent, USA) coupled with Agilent 
6530 Q-TOF LC/MS (Agilent, USA). The ACQUITY 
UPLC BEH C18 column (100 × 2.1 mm2, 1.7 μm) was 
the model of chromatographic separation, and the column 
temperature was set at 20°C, with an injection volume of 
2 μL. Separation was performed at a flow rate of 0.4 
mL/min under a gradient program in which mobile phase 
A was composed of water containing 0.1% formic acid 
(v/v), and mobile phase B was composed of acetonitrile. 
The elution gradient was set as follows: 0 min, 95% B; 3 
min, 80% B; 6.5 min, 50% B; 12.5 min, 15% B; and 17.5 
min, 0% B. The stop time was 23 min. The mass spec-
trometry conditions were as follows: the electrospray ion 
source was detected using positive ion mode, sheath and 
auxiliary gases were both nitrogen, mass scanning range 
was 50–1,000 m/z with a scan time of 0.2 s and scan rate 

of 1 spectra/s, and capillary and sampling cone voltages 
were 3 kV and 40 V, respectively. 

 
Statistical analyses 
The chi-square test and Kruskal–Wallis H test were 
adopted for an analysis of baseline characteristics of the 
study population. Inflammatory cytokine data were log-
transformed and analyzed with ANOVA. Peak intensities 
of metabolites were analyzed with a nonparametric test 
(p<0.05) with a Dunn’s multiple comparisons test con-
ducted between groups. The Spearman nonparametric test 
was used to analyze the correlations between inflammato-
ry cytokines and metabolites. Mass spectrometry data 
were further processed through normalization, scaling, 
filtering, and statistical analysis using MetaboAnalyst 5.0 
(http://www.metaboanalyst.ca). The orthogonal partial 
least squares discrimination analysis (OPLS-DA) model 
was used to perform analysis between groups with a per-
mutation test to assess the risk of overfitting the model. A 
fold change (FC) of >1.2 or <1/1.2 and a false discovery 
rate (FDR) of <0.05 were used to evaluate differential 
metabolites. Inflammatory cytokine concentrations, 
shared metabolites peak intensity, and a correlation heat 
map were illustrated using Graphpad Prism 8.0.2 software. 
Venn diagrams were constructed by 
http://bioinformatics.psb.ugent.be/webtools/Venn/. The 
chi-square test, Kruskal–Wallis H test, and ANOVA were 
conducted with SPSS 26.0. 
 
RESULTS 
Clinical characteristics of the study population 
In this study, 47 patients with TB were recruited between 
December 2017 and January 2019. A total of 15 patients 
were randomly assigned to the control group, 16 to the 
low-dose probiotics group, and 16 to the high-dose probi-
otics group. Patients’ clinical characteristics are presented 
in Table 1. Baseline information comprising age, sex and 
BMI were comparable among the three groups (p>0.05). 
The signs and symptoms of the patients were recorded 
and quantified as TBscore.18 TBscore levels did not sig-
nificantly differ among the three groups (p>0.05). 
 
Effects of probiotics on white blood cell differential 
count and inflammatory cytokines 
The white blood cell differential count and inflammatory 
cytokine concentrations after a 4-week follow-up are pre-
sented in Table 2. The numbers of neutrophils, lympho-
cytes, monocytes, and eosinophils or concentrations of 
interferon-γ (IFN-γ; p=0.912) did not differ significantly 
among the control, low-dose, and high-dose groups. 
However, the concentrations of TNF-α, IL-6, interleukin-
10 (IL-10), and interleukin-12 (IL-12) in the high-dose 
group were significantly lower than in the control and 
low-dose groups (p<0.05; Figure 2). The TNF-α, IL-6, 
IL-10, and IL-12 concentrations were similar in the con-
trol and low-dose groups (Figure 2).  
 
Metabolomic alteration between the control group and 
probiotic group 
The plasma metabolites changed significantly between 
the control and high-dose groups, but no significant dif-
ferences were observed between the control and low-dose 
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groups. The metabolites in the control and high-dose 
groups were clearly separated by the OPLS-DA model 
(Figure 3a). One thousand permutation tests yielded an 
R2Y value of 0.977 (p=0.049) and a Q2 value of 0.553 
(p<0.001) between the control and high-dose groups 
(Figure 3b), suggesting model reliability with no evidence 
of overfitting. Using an FC cutoff value of >1.2 or <1/1.2 
and an FDR cutoff value of <0.05, 44 differential metabo-
lites were identified in patients in the high-dose group (in 
relation to the control group), of which 22 were upregu-
lated and 22 were downregulated (Figure 3c, Supplemen-
tary table 1). The primary upregulated metabolites in the 
high-dose group (in relation to the control group) were 
pyridoxamine, histidine, N-3-oxo-dodecanoyl-L-

Homoserine lactone (3-oxo-C12-HSL), phosphatidylser-
ine (PS), maresin 1 (MaR1), and PC. The primary down-
regulated metabolites were N-acetylmethionine; 11, 12 
epoxyeicosatrienoic acid (11, 12-EET); L-tryptophan; and 
PE.  
 
Metabolomic alteration between the low-dose group and 
the high-dose group 
Results of OPLS-DA demonstrated that the plasma sam-
ples of patients with TB in the low-dose and high-dose 
groups were clearly separated, suggesting the probiotics 
caused significant changes in their metabolic profiles 
(Figure 4a). One thousand permutation tests yielded an 
R2Y value of 0.983 (p=0.007) and a Q2 value of 0.665 

Table 1. Baseline characteristics of patients with tuberculosis† 
 
 Control group (n=15) Low-dose group (n=16) High-dose group (n=16) p 
Age 33.5 (15.2) 26.1 (10.8) 26.1 (10.6) 0.171 
Sex (male) 8 (53.3%) 11 (68.8%) 8 (50.0%) 0.521 
Body-mass index, kg/m2  21.2 (3.4) 20.6 (2.8) 20.0 (2.4) 0.581 
TBscore 3.00 (1.25, 4.00) 2.00 (1.25, 3.75) 4.00 (1.25, 4.00) 0.525 
 
†Numerical variables are presented as mean ± standard deviation for normally distributed variables or median (interquartile range) for non-
normally distributed variables. Categorical variables are presented as number (percentage). 
  
 
Table 2. The plasma white blood cell differential count and inflammatory cytokine concentrations after a 4-week fol-
low-up† 
 
 Control group 

(n=15) 
Low-dose group 

(n=16) 
High-dose group 

(n=16) p 

White blood cell count (109/L) 5.20 (3.86-6.74) 5.70 (5.04-6.85) 6.16 (4.39, 7.51) 0.580 
Neutrophil count (109/L) 2.95 (2.21-4.22) 3.34 (2.50-4.36) 3.34 (2.47, 4.63) 0.733 
Lymphocyte count (109/L) 1.42 (0.96-1.87) 1.60 (1.12-1.95) 1.91 (1.42, 2.35) 0.210 
Monocyte count (109/L) 0.53 (0.46-0.65) 0.62 (0.40-0.77) 0.55 (0.43, 0.67) 0.798 
Eosinophil count (109/L) 0.19 (0.11-0.24) 0.19 (0.12-0.36) 0.10 (0.06, 0.23) 0.113 
IFN-γ lg (pg/mL) 0.53 (0.22) 0.52 (0.17) 0.50 (0.25) 0.912 
TNF-α lg (pg/mL) 0.91 (0.36) 0.88 (0.18) 0.60 (0.36) 0.012 
IL-6 lg (pg/mL) 0.51 (0.58) 0.53 (0.46) 0.11 (0.48) 0.057 
IL-10 lg (pg/mL) 0.91 (0.36) 0.98 (0.21) 0.42 (0.54) 0.001 
IL-12 lg (pg/mL) 1.04 (0.22) 1.07 (0.10) 0.72 (0.29) <0.001 
 
†Inflammatory cytokine data were log-transformed and analyzed with ANOVA. Plasma white blood cell differential count are presented as 
median (interquartile range) and inflammatory cytokine concentrations are presented as mean±standard deviation 
 
 

 
 
Figure 2. L. casei intervention reduced inflammatory cytokine concentrations in patients with tuberculosis. Inflammatory cytokine data 
were log-transformed and analyzed with ANOVA. *p<0.05, **p<0.01, ***p<0.001. 
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(p<0.001; Figure 4b) indicating no overfitting. With cut-
offs of FC >1.2 or <1/1.2 and FDR <0.05, 49 differential 
metabolites were identified in the high-dose group (in 
relation to the low-dose group), of which 29 were upregu-
lated and 20 were downregulated (Figure 4c, Supplemen-
tary table 2). In patients in the high-dose group, the up-
regulated metabolites comprised L-valine, linoleic acid, 
L-asparagine, MaR1, 3-oxo-C12-HSL, pyridoxamine, PC, 
and PS. The downregulated metabolites comprised PE, L-
tryptophan, and N-acetylmethionine. 
 
Changes of key differential metabolites after L.casei 
suppplementation 
According to the FC and FDR, 32 metabolites were 
commonly identified as differential metabolites through 
comparison among the control, low-dose, and high-dose 
groups (Figure 5a). Among the three groups, 11 metabo-
lites exhibited dramatic changes. Compared with the con-
trol and low-dose groups, the high-dose group exhibited 
significant upregulation of pyridoxamine, L-saccharopine, 
PS (19:0/22:6), MaR1, PC (16:0/20:4), PC (16:0/18:1), 
and PC (16:0/16:0) (Figure 5b–5h). Phenylalanine, N-
acetylmethionine, PE (16:0/20:1), and L-tryptophan, 
however, were downregulated in the high-dose group 
(Figure 5i–5l). 
 
Differential metabolites correlate with inflammatory 
cytokines 
To examine potential associations between metabolites 

and inflammatory cytokines, Spearman correlation analy-
sis was performed. A heat map of the scaled correlations 
was generated between the metabolites and identified 
inflammatory cytokines (Figure 6). Strong correlations 
were observed between PS (19:0/22:6) and TNF-α 
(r=−0.507, p<0.001), IL-10 (r=−0.573, p<0.001), and IL-
12 (r=−0.528, p<0.001); between L-tryptophan and IL-12 
(r=0.553, p<0.001); between PC (16:0/18:1) and TNF-α 
(r=−0.403, p=0.005); between PC (16:0/16:0) and IL-12 
(r=−0.467, p=0.002); and between PE (16:0/20:1) and 
TNF-α (r=0.439, p=0.002). 
 
DISCUSSION 
The present study is the first RCT to investigate the ef-
fects of probiotics on plasma inflammatory cytokines and 
metabolites in patients with TB. The results indicated that 
daily L. casei supplementation during TB treatment mod-
ulated inflammatory cytokines and metabolites in plasma. 
Spearman correlation analysis revealed strong correla-
tions between several inflammatory cytokines and metab-
olites. 

The authors’ previous studies have revealed the benefi-
cial effect of L. casei on the composition of gut microbio-
ta16 and that the circulating metabolites affect gut micro-
biota composition.19 The present RCT was conducted on 
the basis of the aforementioned results and revealed that L. 
casei supplementation regulated the abundance of MaR1, 
L-tryptophan, N-acetylmethionine, PS, PC and the con-
centrations of TNF-α, IL-6, IL-10, IL-12.  

 
 
Figure 3. Metabolomic alteration between the control and high-dose groups. (a) The metabolites in the control and high-dose groups were 
clearly separated by the orthogonal partial least squares discrimination analysis model. (b) The model had no evidence of overfitting. One 
thousand permutation tests yielded an R2Y value of 0.977 (p=0.049) and a Q2 value of 0.553 (p<0.001). (c) Heat map of differential me-
tabolites in the high-dose group compared with the control group. The shades of the color represented metabolites levels (black, and white 
indicated higher level, and lower level, respectively). 
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The current results are consistent with those of studies 
that have reported that probiotic supplementation can 
lower the concentration of N-acetylmethionine,20 a me-
thyl donor.21 Decreased N-acetylmethionine diminishes 
the methylation of insulin-like growth factor binding pro-
tein 1 and methionine sulfoxide reductase A and reduces 
the risk of aberrant glucose metabolism.20 Moreover, 
studies have indicated that MaR1 can induce bactericid-
al/permeability-increasing protein expression and Nrf2 
nuclear translocation.22 Therefore, MaR1 can improve the 
anti-inflammatory and antimicrobial properties of M. tu-
berculosis-infected human macrophages.23 MaR1 can also 
reduce M. tuberculosis-induced TNF-α production.22 Ad-
ditionally, increased indoleamine 2,3 dioxygenase 1 
(IDO-1)–mediated tryptophan catabolism may modulate 
the CD4+ T cell responses of patients with TB, alleviat-
ing inflammation and inducing immune tolerance.24 
However, daily probiotic supplementation can limit the 
drops in tryptophan concentrations,25 and thus affect body 
immunity, likely by increasing metabolites.  

In patients with TB, the concentrations of IFN-γ, TNF-
α, IL-10, and IL-12 may increase.26,27 In the present trial, 
L. casei supplementation led to a significant reduction of 
TNF-α, IL-6, IL-10, and IL-12 concentrations. Studies 
have consistently reported that L. casei supplementation 
lowered TNF-α, IL-6, and IL-12 concentrations.28,29 The 
IL-10 concentration also decreased in this study, possibly 
because of the immune-stimulatory effects of IL-10. IL-
10 exerts these effects by inducing bal-2 protein expres-
sion to inhibit peripheral T cell apoptosis or by promoting 
the proliferation and differentiation of B lymphocytes into 
plasmocytes.30,31  

Correlation analysis may explain the regulating effect 
of metabolites on inflammatory cytokines. Studies have 
demonstrated that PS treatment reduces the concentra-
tions of TNF-α and IL-6.32,33 Apoptosis occurs during the 
fight against M. tuberculosis, and PS inhibits the phago-
cytosis of apoptotic cells and induces an anti-
inflammatory state.34 This study indicated a strong corre-
lation between PS (19:0/22:6) and IL-12, likely because 
IL-12 is anti-inflammatory. Tryptophan can be catabo-
lized by IDO-1 in splenic macrophages. Vitro experi-
ments displayed that expression of IDO-1 significantly 
suppresses IL-12 production in splenic macrophages 
through a primary downstream effector, metabolic-stress 
sensing protein kinase General Control Non-depressible 
2.35 PC is the precursor of lysophosphatidylcholine, a 
chemoattractant for T lymphocytes,36 and PC lowered the 
concentrations of TNF-α and IL-6 in rat experiments.37,38 
Overall, the present results indicated that L. casei may 
regulate the plasma metabolic profile and inflammatory 
cytokine concentrations of patients with TB, and inflam-
matory cytokine changes may partly cause the changes in 
the metabolites. 

This study has several strengths. First, this is the first 
clinical trial to investigate the effect of probiotics on 
plasma inflammatory cytokines and metabolites in pa-
tients with TB, and the results indicated that L. casei sup-
plementation modulates inflammatory cytokines and me-
tabolites in patients with TB. Second, the potential corre-
lations between the abundance of plasma metabolites and 
the concentrations of inflammatory cytokines were exam-
ined. The effect of L. casei supplementation on inflamma-
tory cytokines may be related to the metabolite changes.  

 
 
Figure 4. Metabolomic alteration between the low-dose and high-dose groups. (a) The metabolites in the low-dose and high-dose groups 
were clearly separated by the orthogonal partial least squares discrimination analysis model. (b) The model had no evidence of overfitting. 
One thousand permutation tests yielded an R2Y value of 0.983 (p = 0.007) and a Q2 value of 0.665 (p<0.001). (c) Heat map of differential 
metabolites in the high-dose group compared with the low-dose group. The shades of the color represented metabolites levels (black, and 
white indicated higher level, and lower level, respectively).  
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Third, patients with TB were all inpatients during the first 
4 weeks of supplementation and shared similar living and 
dietary habits, which could have increased the authentici-
ty of the results. 

Limitations of the study should also be acknowledged. 
The follow-up duration of 1 month prevented an investi-
gation on the long-term effects of L. casei during TB 
treatment on patients’ metabolic profiles and immunity 
conditions, which had been altered when patients were 
infected with M. tuberculosis. The results demonstrated 
that a 1-month intervention resulted in significant im-
provements. Second, the present study only employed 
two supplementation dosages; therefore, elucidating the 
dosage of L. casei supplementation for modulating me-
tabolites and the concentrations of inflammatory cyto-
kines is difficult.  

In conclusion, daily L. casei supplementation of up to 2 
× 1010 CFU during the intensive phase of TB treatment 
modulates metabolites and inflammatory cytokines. De-
creased concentrations of inflammatory cytokines may be 
related to the metabolite changes. Future work can inves-
tigate the effect of long-term probiotic interventions in 
patients with TB. 
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Peak intensities of metabolites were analyzed with a nonparametric test with a Dunn’s multiple comparisons test conducted between 
groups. *p<0.05, **p<0.01, ***p<0.001. 
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Figure 6. Correlations between inflammatory cytokines and metabolites through Spearman nonparametric test. The shades of the color 
represented correlations levels (Black, and white indicated positive correlation, and negative correlation, respectively).  
 
 

 
 
Figure 7. Graphical abstract. 
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Supplementary table 1. The differential metabolites between the control and high-dose groups in plasma  
 
Metabolite name FC log2(FC) p. adjusted 
Phosphatidylethanolamine (18:0/20:3) 0.01 -6.72 2.84E-02 
Phosphatidylethanolamine alkenyl (18:0/18:1) 0.01 -6.19 2.20E-02 
Phosphatidylethanolamine (16:0/20:1) 0.04 -4.65 4.82E-04 
Phosphatidylcholine alkyl (18:0/22:6) 0.05 -4.35 3.73E-02 
Phosphatidylglyceride (18:1/18:2) 0.10 -3.37 2.90E-02 
Phosphatidylcholine lyso (15:0) 0.11 -3.17 3.77E-02 
Hyperoside 0.15 -2.75 2.97E-02 
gamma-tocotrienol 0.22 -2.17 3.35E-02 
alpha-tocotrienol 0.23 -2.10 9.52E-03 
Retinoic acid 0.24 -2.05 9.76E-03 
Tartronate 0.27 -1.88 7.09E-03 
L-tryptophan 0.27 -1.87 9.92E-03 
1-nitropyrene 0.29 -1.81 2.56E-02 
Phosphatidylcholine (16:1/20:5) 0.29 -1.78 2.72E-02 
Phosphatidylcholine alkenyl (16:0/20:4) 0.31 -1.69 6.81E-03 
11, 12 epoxyeicosatrienoic acid 0.33 -1.61 2.93E-03 
Guanosine 0.33 -1.58 1.18E-02 
Phosphatidylcholine (16:0/20:5) 0.40 -1.34 3.09E-02 
N-acetylmethionine 0.41 -1.28 7.34E-03 
Propamocarb 0.46 -1.11 9.40E-03 
Phosphatidylethanolamine (19:0/18:2) 0.50 -1.00 2.27E-02 
Phenylalanine 0.65 -0.61 3.73E-02 
L-valine 1.37 0.46 4.65E-02 
L-norvaline 1.60 0.68 7.75E-03 
Erucamide 1.70 0.77 3.51E-02 
Phosphatidylcholine (16:0/18:1) 1.80 0.84 8.27E-03 
Threonine 1.85 0.89 4.06E-02 
Sphingomyelin (d18:2/C18:0) 1.94 0.95 3.53E-02 
D-ribose 1.94 0.96 1.08E-02 
Maresin 1 2.04 1.03 1.28E-02 
L-asparagine 2.12 1.08 9.55E-03 
Phosphatidylserine (19:0/22:6) 2.55 1.35 4.13E-02 
Phosphatidylethanolamine lyso (18:0) 2.62 1.39 9.92E-03 
Phosphatidylcholine (14:0/16:0) 2.87 1.52 1.45E-02 
L-saccharopine 2.90 1.54 1.34E-04 
Phosphatidylethanolamine alkenyl (17:0/22:4) 3.43 1.78 3.02E-02 
Triacylglycerol (10:0/18:1/18:2) 3.44 1.78 3.20E-02 
N-3-oxo-dodecanoyl-L-Homoserine lactone 3.55 1.83 1.51E-02 
Phosphatidylcholine (17:0/18:2) 3.60 1.85 1.24E-02 
Phosphatidylcholine (16:0/16:0) 3.73 1.90 5.15E-03 
Histidine 4.09 2.03 7.29E-03 
Phosphatidylcholine (19:0/22:6) 4.10 2.04 4.49E-02 
Pyridoxamine 4.28 2.10 2.99E-03 
Phosphatidylcholine (16:0/20:4) 9.17 3.20 2.52E-02 
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Supplementary table 2. The differential metabolites between the high-dose and low-dose groups in plasma  
 
Metabolite name FC log2(FC) p. adjusted 
Phosphatidylcholine alkyl (18:0/22:6) 0.04  -4.77  1.96E-02 
Phosphatidylcholine lyso (15:0) 0.12  -3.10  2.68E-02 
Phosphatidylglyceride (18:1/18:2) 0.13  -2.99  7.78E-03 
L-tryptophan 0.15  -2.77  3.20E-03 
Phosphatidylethanolamine (16:0/20:1) 0.15  -2.75  1.35E-05 
Phosphatidylcholine (18:0/18:0) 0.16  -2.67  3.03E-02 
Tartronate 0.22  -2.16  5.96E-04 
Retinoic acid 0.25  -2.02  7.04E-04 
alpha-tocotrienol 0.25  -1.98  1.17E-03 
L-tyrosine 0.29  -1.79  4.46E-02 
11, 12 epoxyeicosatrienoic acid 0.31  -1.69  1.87E-04 
Phosphatidylcholine alkenyl (16:0/20:4) 0.33  -1.62  1.66E-02 
Phosphatidylcholine (16:1/20:5) 0.34  -1.58  3.01E-02 
L-arginine 0.34  -1.56  2.35E-02 
Guanosine 0.34  -1.54  6.50E-04 
N-acetylmethionine 0.37  -1.42  1.52E-03 
Propamocarb 0.38  -1.39  7.28E-03 
Phosphatidylethanolamine (16:0/16:1) 0.40  -1.33  4.23E-02 
Phosphatidylcholine (16:0/20:5) 0.41  -1.28  1.30E-02 
Phenylalanine 0.53  -0.91  3.32E-03 
L-valine 1.45  0.54  9.68E-03 
Abietic acid 1.59  0.66  1.25E-02 
Erucamide 1.59  0.67  3.02E-02 
Linoleic acid 1.63  0.71  1.16E-02 
Threonine 1.68  0.75  1.89E-02 
L-leucine 1.77  0.82  4.75E-03 
L-asparagine 1.77  0.83  8.53E-03 
Phosphatidylcholine (14:0/16:0) 1.79  0.84  2.25E-02 
Phosphatidylcholine (14:0/20:4) 1.80  0.85  5.06E-03 
Phosphatidylcholine (16:1/18:3) 1.80  0.85  5.06E-03 
L-lysine 1.81  0.85  2.75E-02 
Phosphatidylcholine (16:0/18:1) 1.89  0.91  5.47E-03 
L-norvaline 1.91  0.94  4.48E-05 
Phosphatidylethanolamine (18:0/22:6) 1.95  0.96  1.25E-02 
2,3-Diphosphoglycerate 2.01  1.01  2.02E-03 
Phosphatidylethanolamine alkenyl (18:0/20:4) 2.15  1.10  1.60E-02 
Phosphatidylethanolamine lyso (18:0) 2.36  1.24  1.16E-02 
Sphingomyelin (d18:2/C16:0) 2.43  1.28  4.95E-02 
L-saccharopine 2.66  1.41  6.31E-05 
Maresin 1 2.95  1.56  2.53E-03 
Phosphatidylethanolamine (19:0/20:4) 3.08  1.62  3.84E-02 
Phosphatidylcholine lyso (16:0) 3.50  1.81  1.49E-03 
Phosphatidylethanolamine (19:0/20:3) 3.64  1.86  1.77E-02 
Phosphatidylcholine (16:0/16:0) 4.74  2.25  5.96E-04 
Pyridoxamine 4.75  2.25  4.31E-04 
Phosphatidylcholine (16:0/20:4) 5.23  2.39  2.51E-02 
Phosphatidylethanolamine (19:0/18:2) 5.38  2.43  2.54E-02 
N-3-oxo-dodecanoyl-L-Homoserine lactone 5.70  2.51  6.67E-04 
Phosphatidylserine (19:0/22:6) 14.39  3.85  9.68E-05 
 
 


