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Review Article

17ββββ-Estradiol epoxidation as the molecular basis for breast 
cancer initiation and prevention

Fu-Li Yu PhD

Department of Biomedical Sciences, University of Illinois, College of Medicine at Rockford, Rockford, Illinois, USA

Epidemiological and animal studies have indicated that 17β-estradiol (E2) is involved in breast cancer; however,
the mechanism is unclear. We found that E2 could be activated by epoxidation, resulting in its ability to inhibit
nuclear DNA-dependent RNA synthesis, and to bind DNA, forming DNA adducts both in vitro and in vivo.
Because epoxidation is required for the activation of many chemical carcinogens, including benzo(a)pyrene,
7,12-dimethylbenz(a)anthracene and aflatoxins, we proposed previously that E2 epoxidation is the underlying
mechanism for the initiation of breast cancer. The first part of this review is to present the experimental evidence
obtained from this laboratory in support of this hypothesis. Based on these newly discovered insights on E2
epoxidation and its initiation role in breast cancer carcinogenesis, a method to screen chemopreventive agents
against breast cancer has been developed. This constitutes the second part of the review. Two examples will be
used to illustrate the utility of this screening technique. The effect of fat on breast cancer has been a longstanding
but unresolved issue. Epidemiological studies provide conflicting results regarding the association of dietary fat
and breast cancer. Because vegetable oils contain various amount of mono- and polyunsaturated fatty acids, they
are potential antioxidants. Data are presented to show that commercial vegetable oils, independent of their
mono- or polyunsaturated fatty acid content, are all able to prevent the formation of E2 epoxide, as measured by
the loss of the ability of E2 to inhibit nuclear RNA synthesis in vitro. Tamoxifen (TAM), an anti-estrogen used
for breast cancer treatment, has recently been found to have a strong breast cancer preventive effect. The
mechanism for this is unknown. Using the same screening technique, we found that when incubated together
with E2 for epoxidation, TAM was able to prevent the formation of E2 epoxide, as evidenced by both the loss of
the ability of E2 to inhibit nuclear RNA synthesis and the reduced binding of [3H]-labelled E2 to nuclear DNA
in a dose-dependent manner. These experimental results suggest that the breast cancer preventive effect of TAM
is to prevent the formation of E2 epoxide through a competitive epoxidation mechanism with E2.

Key words:  17ββββ-estradiol, 17ββββ-estradiol epoxide, breast cancer, chemopreventive agent screening, DNA adduct, RNA
synthesis, tamoxifen, vegetable oil.

Introduction
Breast cancer is the most common form of cancer among US
women, with an estimated 183 000 new cases each year, and
is the second leading cause of cancer deaths estimated at
41 000 per year.1 Animal and epidemiological studies have
indicated that oestrogens are involved in uterine2,3 and
breast4–6 cancers. However, their mechanisms are still not well
understood.7 Basically, there are two ways to fight and win the
war on cancer. One is to find a means of preventing the
disease and the other is to find a way to successfully treat it.
Studies indicate that as many as 80% of all cancers are related
to environmental or external factors and are therefore, in
theory, preventable.8,9 However, at present, because our
understanding of cancer is still very limited, we cannot
prevent cancers from occurring. In addition, there are social,
political, economical and personal factors that may prevent the
application of our knowledge in cancer prevention. An addi-
tional complication in breast cancer prevention is that 17β-
estradiol (E2) and estrone (E1) are endogenous hormones.
Furthermore, oestrogens (either natural or synthetic) are
widely used in a variety of clinical conditions from oestrogen

replacement therapy to cancer treatment, irrespective of the
fact that they are known to be carcinogens.2–6 Earlier studies
have clearly demonstrated that the synthetic oestrogen diethyl-
stilbestrol (DES), used with the goal of stabilising pregnan-
cies, has been associated with an increased risk of breast
cancer in those women who take it,10 and of vaginal adeno-
carcinoma in their daughters.11 Results from oestrogen
replacement studies have indicated that although exposure to
exogenous oestrogen for less than two years does not increase
the risk of breast cancer, extended periods of use lasting more
than 10 years may increase the risk by 25–30%.12 Data from
recent prospective case-control studies have clearly shown
that there is a positive association between blood levels of E2
and E1 and the risk of breast cancer in postmenopausal
women.4–6 Clearly, the basic understanding of the molecular
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mechanism of these carcinogens is fundamentally important
for the proper design of breast cancer prevention strategies and
treatment of the disease.

17ββββ-estradiol epoxidation as the underlying mechanism 
of breast cancer initiation
Several years ago, we found that E1 and E2 could be
activated by the epoxide-forming oxidant dimethyldioxirane
(DMDO). This resulted in the inhibition of rat liver nuclear
and nucleolar RNA synthesis in vitro (Fig. 1).13 Because
epoxidation is required for the activation of many well-
known chemical carcinogens (e.g., benzo(a)pyrene, 7,12-
dimethylbenz(a)anthracene and aflatoxins),14–23 we proposed
that oestrogen epoxidation is the underlying mechanism for
the initiation of breast cancer (Fig. 2).13

Chemical carcinogenesis is a multistage process that
includes initiation, promotion and progression.14–19 Initia-
tion, the first critical and irreversible step in carcinogenesis,
requires the covalent binding of a carcinogen to DNA.14–19

For this reason, one of the basic tests of our hypothesis was
to determine whether E1 and E2 are able to bind to DNA after
epoxide activation. In support of our hypothesis, we found

that [3H]-labelled E1 and E2 are able to bind to DNA only
after epoxide activation using several different DNA tem-
plates (Fig. 3).24,25 The covalent binding nature of E1 and E2
to DNA was further confirmed by [32P]-post-labelling anal-
ysis (Fig. 4).24–26

However, as these results were obtained mainly from in
vitro experiments, it is important to show that oestrogen
DNA adducts are also formed in vivo. A recent report of
female ACI rats showed that when a continuous treatment of
E2 was delivered through Silastic tubing implants containing
27.5 mg crystalline E2, 100% of the rats developed
mammary tumours within a year.27 Using the same strain of

Figure 1. Dose–response inhibition curves of (×–×) dimethyldioxirane
(DMDO)-activated estrone (E1), (�–�) 17β-estradiol (E2), (�–�)
diethylstilbestrol (DES) and ( – ) tamoxifen (TAM) on rat liver
nuclear RNA synthesis in vitro. Values given are the mean of 2–4
separate experiments. (Reproduced, with permission, from reference 13.)

Figure 2. Epoxidation of estrogen as the basis for carcinogenesis.

Figure 4. 32P-postlabelling maps of the 17β-estradiol (E2) and
dimethyldioxirane (DMDO)-activated E2-treated calf thymus DNA. (a)
Control group; (b) E2 epoxide group. (Reproduced, with permission,
from reference 25.)

Figure 3. Binding of [3H]-labelled 17β-estradiol (E2) epoxide to
(�–�) calf thymus DNA, ( – ) poly(�(A-T)) and (×–×)
poly(�(G-C)). Values given are the average of 2–3 separate experi-
ments. (Reproduced, with permission, from reference 14.)
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rats, we found that when the female ACI rats were given
intramammillary injections of E2 or DMDO-activated E2
(i.e., E2 epoxide), identical DNA adducts were formed in
vivo, and the E2 epoxide was at least 25 000 time more active
than E2 in the formation of DNA adducts in mammary
glands (Figs 5,6).28–30 Therefore, these in vitro and in vivo
experiments have provided critical evidence in support of
our proposed hypothesis of oestrogen epoxidation and the
initiation of oestrogen carcinogenesis.13

17ββββ-estradiol epoxidation as a molecular basis for breast 
cancer prevention
It is clear that in order to properly prevent a disease, it is
necessary to know the cause of the disease. In terms of
breast cancer, our findings that E2 could be activated by
epoxidation13 and was consequently able to bind DNA,
forming DNA adducts, in vitro and in vivo24–26,28–30 have
provided a strong molecular basis for an initiatory role of E2
in breast cancer aetiology.13 Based on this new insight, we

Figure 6. In vivo evidence for the formation of identical 17β-estradiol (E2)-DNA adducts in the mammary glands of female ACI rats given
intramammillary injections of E2 or E2 epoxide. The major DNA adducts, namely 1, 2 and 3, from both E2 and E2 epoxide groups were excised,
eluted, concentrated and analysed by thin-layer chromatography under four different solvent systems. (a) 0.4 M Tris-HCl, 0.4 M H3BO3, 8 mM
EDTA, 1.04 M NaCI, and 6.4 M urea (pH 8); (b) Isopropanol: 4 N NH4OH (1:1, v/v); (c) 0.56 M LiCl, 0.24 M NaH2PO4, 0.4 M Tris-base, and
6.8 M urea (pH 4.5); (d) 0.64 M NaH2 PO4, 0.4 M Tris-HCl and 6.8 M urea (pH 8.0). (i) 1, 2 and 3 are the three major DNA adducts from the E2

group, as shown in Figure 5. (ii) 1, 2 and 3 are the three major DNA adducts from the E2 epoxide group, as shown in Figure 5. (Reproduced, with
permission, from reference 30.)

Figure 5. In vivo detection of 17β-estradiol (E2)-DNA adducts in the mammary glands of female ACI rats after intramammillary injections of E2 or
E2 epoxide. (a) Control group: only the solvent, 20% DMSO in corn oil, was injected. (b) E2 group: single injection of 250 µg/mammary gland per
day for three consecutive days. (c) E2 epoxide group: single injection of 1 µg/mammary gland. (Reproduced, with permission, from reference 30.)
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have developed a technique to screen potential chemo-
preventive agents at the initiation step of breast cancer
carcinogenesis. This screening test determines whether a
chemical agent is able prevent the formation of E2 epoxide
(i.e., prevention at the initiation step), as measured by both
the loss of the ability of E2 to inhibit nuclear DNA-
dependent RNA synthesis13,24,25 and the ability of
[3H]-labelled E2 to bind to nuclear DNA.24–26,28–30 The
following two examples are used to illustrate the utility of
this screening technique.

1. Evidence for the potential of vegetable oils in breast 
cancer prevention
The effect of dietary fat on breast cancer has been a long-
standing and unresolved issue.31–33 Although it is a popular
belief that monounsaturated fat (e.g., olive oil) protects and
polyunsaturated fat (e.g., linoleic acid) promotes breast cancer
carcinogenesis,33–35 results from recent large-scale epidemio-
logical studies have found no evidence that the intake of either
total fat or specific subtypes of fat were associated with breast
cancer risk.36–38 There are at least two basic reasons why this
issue has not been resolved for so long: (i) Epidemiological
studies measuring dietary intake do not take into consideration
other lifestyle risk factors (e.g., obesity, physical activity and
other eating habits) that may contribute to the final outcome of
the disease; (ii) Chemical carcinogenesis is a multistage
process14–19 and epidemiological studies are not able to differ-
entiate the beneficial or harmful effects of dietary fat at a
defined stage during the multistage process of carcinogenesis.
Based on the above analyses, it is clear that in order to have a
better understanding of the effect of dietary fat on breast
cancer, it is necessary to dissect and study the effect of dietary
fat at the individual steps of the multistage process of chemical
carcinogenesis.

Because vegetable oils contain various amounts of mono-
and polyunsaturated fatty acids, they are potential anti-
oxidants. The results from our studies, as shown in Fig. 7,
indicate that commercial vegetable oils, independent of their
mono- or polyunsaturated fatty acid content, are all able to
prevent the formation of E2 epoxide, as measured by the loss
of the ability of E2 to inhibit nuclear RNA synthesis in vitro.

These are very dramatic findings. Basically, these results
confirm our belief that vegetable oils are effective anti-

oxidants and are able to prevent the formation of E2 epoxide
in vitro. However, because vegetable oils are heated in
cooking (except when used in salad dressing), and because
heating may cause oxidation of the unsaturated fatty acids in
the vegetable oil, possibly causing them to lose their protec-
tive effect against E2 epoxidation, it is important to know
whether heating will abolish the protective effect of the
vegetable oils. As indicated in Table 1, heating the vegetable
oils at 200°C for 5 min did not reduce this preventive effect.

2. Prevention of E2 epoxide formation through competitive 
epoxidation as the mechanism for tamoxifen in breast 
cancer prevention
Tamoxifen has been used for adjuvant therapy in breast
cancer treatment since the early 1970s. Recent large clinical
trials indicate that TAM is also an effective chemopreventive
agent for breast cancer.39 Because TAM is known to block
the binding of E2 to its receptor, this anti-estrogen action is
believed to be the underlying mechanism for the efficacy of

Figure 7. The preventive effect of vegetable oils on the epoxide
formation of 17β-estradiol (E2) in vitro. (�), Control group, 1 mg
E2 + 0.5 mL acetone; (�), E2 epoxide group, 1 mg E2 treated with
0.5 mL dimethyldioxirane (DMDO); and ( ), vegetable oil group,
1 mg E2 + 20 µL vegetable oil treated with 0.5 mL DMDO. Values
given are the mean of 4–6 independent experiments. GMP, guanosine
5-monophosphate.

Table 1. Preventive effect of vegetable oil on the inhibition of nuclear RNA synthesis by 17β-estradiol (E2) epoxide in vitro
after heating

Group Nuclear RNA synthesis (pmol [32P]-GMP incorporated/mg DNA) 

Before heating % After heating %

Control 768 ± 9 100 768 ± 9 100
Olive oil 768 ± 10 100 745 ± 15 97
Sunflower oil 750 ± 16 98 691 ± 7 90
Corn oil 791 ± 32 103 714 ± 8 93
Soybean oil 742 ± 18 97 722 ± 15 94
Grapeseed oil 745 ± 43 97 752 ± 8 98

Values given are the mean of 2–3 independent experiments. GMP, guanosine 5-monophosphate.
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TAM in breast cancer therapy. However, this single mode of
action of TAM is inadequate in explaining the fact that TAM
is also known to induce endometrial39–42 and possibly
other43–45 cancers. Recent studies indicate that after meta-
bolic activation, TAM is able to bind to DNA, forming DNA
adducts.45 These results strongly suggest that TAM is not
only a carcinogen but, more specifically, an initiating carcin-
ogen. Based on these facts, it is believed that TAM has at
least two opposing mechanisms of action: (i) competing with
E2 at the receptor level and blocking the promotional role of
E2 in breast cancer; and (ii) binding to DNA after metabolic
activation and initiating carcinogenesis. However, this dual
mechanism of TAM action is still not able to explain how it
is able to prevent breast cancer.39

17β-Estradiol requires activation by epoxidation to bind
to DNA and form DNA adducts,24–26,28–30 as does TAM13

(Tables 2,3). This raises the possibility that TAM, as an
effective competitor for epoxidation, may act indirectly by
preventing the formation of E2 epoxide and, consequently,
breast cancer. Our recent studies (Figs 8,9) have indeed
shown that when incubated together with E2 for epoxidation,
TAM is able to dramatically reduce the formation of E2
epoxide, as measured by both the loss of the ability of E2 to
inhibit nuclear RNA synthesis and the reduced binding of
[3H]-labelled E2 to nuclear DNA. Identical results were
obtained when TAM and E1 were used. These results
strongly suggest that the prevention of E2 epoxide formation
through competitive epoxidation is the underlying mech-
anism used by TAM for its preventive effect against breast
cancer.

Conclusions
Evidence has been presented to show that after activation by
epoxidation, E2 is able to inhibit DNA-dependent RNA
synthesis and bind to DNA, forming DNA adducts, both in

vitro and in vivo. These experimental results not only lend
strong support to our hypothesis regarding E2 epoxidation
and the initiation of breast cancer, but also provide a
molecular basis to screen potential chemopreventive agents
against breast cancer. As shown in screening for the preven-
tive potentials of vegetable oils and in deciphering the
underlying mechanism of TAM for its preventive effect
against breast cancer, the basic screening test determines
whether a chemical agent is able to prevent the formation of
E2 epoxide (i.e., prevention at the initiation step), as meas-
ured by both the loss of the ability of E2 to inhibit nuclear

Table 2. Inhibition of 17β-estradiol (E2) epoxide on nuclear
RNA synthesis in vitro

Group Nuclear RNA synthesis 
(pmol [32P]GMP incorporated/mg DNA)

% 

Control 768 ± 9 100
E2 829 ± 15 108
E2 epoxide 200 ± 8 26

Values given are the mean of 3–4 independent experiments. GMP, guano-
sine 5-monophosphate.

Table 3.  Effect of tamoxifen (TAM) and TAM epoxide on
nuclear RNA synthesis in vitro

Group Nuclear RNA synthesis
(pmol [32P]GMP incorporated/mg DNA)

% 

Control 610 ± 16 100
TAM 491 ± 18 81
TAM epoxide 427 ± 18 70

Values given are the mean of 3–4 independent experiments. GMP, guanosine
5-monophosphate.

Figure 8. Preventive effect of tamoxifen (TAM) on the epoxide forma-
tion of 17β-estradiol (E2) in vitro, reflected in the loss of inhibition of
RNA synthesis. (�), Control group, 1 mg E2 + 0.5 mL acetone; (�), E2

epoxide group, 1 mg E2 treated with 0.5 mL dimethyldioxirane
(DMDO); and ( ), tamoxifen (TAM) groups, 50 µg (TAM1), 100 µg
(TAM2) or 250 µg (TAM3) TAM. Values given are the mean of 3–4
independent experiments.

Figure 9. Preventive effect of tamoxifen (TAM) on the epoxide forma-
tion of 17β-estradiol (E2) in vitro, reflected in the reduced binding of
[3H]-labelled E2 to nuclear DNA. (�), Control group, 1 mg E2 (contain-
ing 10 µCi [3H]-labelled E2) + 0.5 mL acetone; (�), E2 epoxide group,
1 mg E2 (containing 10 µCi [3H]-labelled E2) + 0.5 mL dimethyldiox-
irane (DMDO); and ( ), tamoxifen (TAM) groups, 50 µg (TAM1),
100 µg (TAM2) or 250 µg (TAM3) TAM. Values given are the
mean ± SE of 2–3 independent experiments.
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DNA-dependent RNA synthesis and the ability of
[3H]-labelled E2 to bind to nuclear DNA. We believe that
this screening technique will provide a fast and economical
way to identify a wide variety of potential chemopreventive
agents for further in vivo animal testing.
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