The effect of two years milk supplementation on bone mineral accretion in Chinese adolescent girls

K Zhu, H Greenfield, X Du, DR Fraser

Department of Veterinary Science, University of Sydney, NSW, 2006

To investigate the effect of milk supplementation on bone mineral accretion during early puberty, a two-year double-blind, controlled supplementation trial with vitamin D and/or calcium fortified milk was carried out in Chinese 757 girls aged 10 years consuming plant-based diets. There were divided into three groups according to of randomly selected Beijing schools: In Group 1 schools, subjects received 330 mL UHT milk fortified with Ca as milk salts (providing an extra 560 mg Ca/day) on every school day; in Group 2 schools, subjects received the same milk additionally fortified with vitamin D (8 µg/day); in Group 3 schools, subjects were un-supplemented controls. is the control group. Bone mineral density (BMD) of distal (DF) and proximal forearm (PF), were measured in all subjects, and of total body (TB) was measured in a sub-sample of 414 girls by dual X-ray absorptiometry (DXA) at baseline and end-trial.

A total of 327 days supplementation was provided over day during the two years was 327 days. The additional Ca intakes were averaged 251 mg per day over this period. While only 56.3% of subjects had breast development either at Tanner stage 2 or 3 at baseline, 81.5% had reached Tanner stage 2 or 3, and 13.8% had reached Tanner stage 4 or 5 at 24 months. No significant differences in terms of weight, height and pubertal status were found between groups at baseline or end-trial 24 months. Both supplemented groups had significantly higher percentage gains (mean ±SEM) in PFBMD (13.06 ±0.92, 12.88 ±0.83 vs 2.78 ± 0.90, P < 0.001), and TBBMD (7.02 ±0.59, 8.89 ± 0.61 vs 3.86 ± 0.58, P < 0.001). 24 months milk supplementation on school days over 24 months, significantly increased bone mineral accrual in Chinese adolescent girls. If this gain persists, the eventual peak bone mineral density should increase in supplemented subjects, and reduce the risk of future osteoporotic fracture.

Supported by Dairy R & D Corporation and Nestle Foundation.