P37
The M.E.D.O.W. (Macadamia Enriched Diets for Overweight subjects) study: Baseline characteristics of volunteers for a community-based weight loss trial.

S Somerset1 2, K Markwell1, L Graham1, M Spencer1, K Kostner3
1School of Public Health, and 2Heart Foundation Research Centre, Griffith University, and 3Department of Cardiology, University of Queensland, Brisbane, Australia

Background – MEDOW is an 18-month randomised trial comparing effects of a low fat versus a monounsaturated fatty acid (MUFA)-enriched diet (35-40%E as fat, mainly from macadamia nuts) on cardiometabolic (CM) health indicators (body weight, lipidaemia, endothelial function and glycaemia). These diets plus physical activity (PA) plans according to Australian National PA Guidelines will be given to 60 overweight/obese, but otherwise healthy adults. Intrinsic Motivation Theory will be used as a guiding framework to identify themes related to program adherence and CM outcomes.

Objectives – To describe characteristics of volunteers for inclusion in the MEDOW trial, and to summarise baseline CM characteristics of the subpopulation accepted into the trial.

Design – Cross-sectional; Respondents to local newspaper advertisements for volunteers in a weight loss study.

Outcomes – Of 116 volunteers expressing interest to date, 29 (25%) met inclusion criteria for the study, and consented to participate. Their mean BMI was 35.2 (range 27.5-43.5), with 48% and 52% being overweight and obese, respectively. Mean total, HDL and LDL cholesterol levels were 5.2 (range 4.1-6.7), 1.5 (range 0.9-2.6) and 3.1 (range 2.0-4.8) mmol/L, respectively. Baseline levels of C-reactive protein, IL-6 and Lp(a) were also taken. Of those excluded (n=87), 8 (no reason given) and 9 (personal reasons) dropped out before screening. The most common reason for screening out (27%) was the presence of a medical condition requiring medication (hypertension, glucose intolerance, hypercholesterolaemia, arthritis, depression, and diabetes). Several volunteers had personal contact with included subjects, which compromised randomisation. Food sensitivities and fish oil supplementation also were common reasons for exclusion.

Conclusions – Volunteers screened out of clinical trials are a rich, but underutilised, source of information on enhancing reach and effectiveness of community-based lifestyle interventions. These data indicate a range of sub-populations of overweight subjects, with differing health risk profiles, often requiring tailored interventions.

P38
Public health nutrition competencies and registration of nutritionists: implications for workforce development

VM Flood1, CY Louie1, T Gill1, R Hughes2
1NSW Centre for Public Health Nutrition, University of Sydney, NSW 2006
2Nutrition Unit, School of Public Health, Griffith University, Gold Coast, Queensland 4217

Background – In May 2007 both the Nutrition Society of Australia (NSA) and Dietetians Association of Australia (DAA) proposed separate systems to allow members to claim registration as Registered Public Health Nutritionists or Accredited Nutritionists, respectively. There is confusion among professionals about what each system offers.

Objective – To investigate the differences between each proposed registration system in relation to a standard set of competencies, as described in the “Competency framework for public health nutrition workforce development” (1).

Design – Specialist competencies for registration by the NSA and DAA were compared to a standard set of competencies for public health nutritionists (PHN) (1).

Outcomes – The DAA standard is designed for an entry level dietitian / nutritionist and does not provide recognition of advanced level practice, at this level. The NSA system requires a science degree with a major in nutrition and post-graduate training in PHN or nutritional epidemiology or other formal education or training in PHN, and three years of relevant professional experience. The DAA standard focuses on community nutrition (in the relevant section), with little development of concepts related to population health. The NSA standard addresses a similar range of PHN competencies as the framework, including surveillance, food systems, food policy, community work, leadership, and research. The NSA standard generally has fewer specific detailed criteria than the PHN framework and some areas have not been included, such as workforce development and advocacy.

Conclusions – It is useful to consider PHN competencies as a tool which can be used by educational institutions and employers to improve skills and knowledge of the PHN workforce. However, for registration to provide any effective contribution to skills development, there needs to be some recognition by the wider profession and employers that this is a credible system that identifies the particular skills and knowledge required by the PHN workforce, and that this is used as an incentive for appropriate remuneration in recognition of competencies attained.

Reference: