Concurrent Session 8: Dietary Patterns and Intakes

Change in portion size and associated energy contribution of commonly consumed foods between the 1983 and 1995 Australian nutrition surveys

AM Rangan¹, SK Schindeler², IHE Rutishauser³, TP Gill¹, K Webb¹

¹ NSW Centre for Public Health Nutrition, University of Sydney, NSW 2006
² NSW Department of Health, North Sydney, NSW 2059
³ Faculty of Health, Medicine, Nursing and Behavioural Sciences, Deakin University, VIC3217

Background – Increase in portion size is a potential contributor to increasing rates of overweight and obesity. However, little data are available in Australia examining changes in portion size over time.

Objective – To compare the portion size (i.e. the weight of a particular food consumed at one time) of commonly consumed foods in the 1983 and 1995 national nutrition surveys, and to estimate the effect of any change in portion size on energy contribution.

Design – Database codes for foods commonly consumed in 1983 were matched as closely as possible with codes for the same foods reported in 1995. NUTTAB91/92 values were used to determine energy contribution (1). For both surveys the average portion size was determined by sex and age group (25-44, 45-64y). From these data the difference in portion size and the associated energy contribution, between 1983 and 1995, were calculated.

Outcomes – For two-thirds of the foods mean portion size was larger in the 1995 survey. On average portion size increased by 8-14% in all age/sex subgroups between 1983 and 1995. Some of the foods showing the greatest absolute increases in energy contributed from a single portion, in all subgroups, included white bread and rolls, breakfast cereal, rice, pasta, orange juice, fruit drinks, soft drinks, beer, wine, chicken and peanuts. Only a few foods, including beefsteak and oranges, showed a decrease in energy contribution by a single portion, across all subgroups.

Conclusions – The portion size reported by Australian adults for many commonly consumed foods has increased between 1983 and 1995.

References

Dietary patterns among Australian women at different stages of the life-course

GD Mishra¹, SA McNaughton², WJ Brown¹, K Ball³, GG Giles⁴, AJ Dobson¹

¹School of Population Health, University of Queensland, Brisbane, QLD 4006, Australia.
²Centre for Physical Activity and Nutrition Research, Deakin University, Melbourne, VIC 3125, Australia
³School of Human Movement Studies, University of Queensland, Brisbane, QLD 4072, Australia
⁴Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, VIC 3053, Australia

Background – Food intakes and dietary patterns are known to vary with age but there has been little work investigating whether distinct dietary patterns exist at different stages of the life-course among women.

Objectives – To assess variations in dietary patterns between two age cohorts of Australian women and assess the variations according to socio-demographic and behavioural characteristics.

Design – Dietary intake was assessed using a 74-item food frequency questionnaire among women aged 50-55 years (n=10580; “mid-age”) in 2001 and aged 25-30 years (n=7460; “young”) in 2003, from the Australian Longitudinal Study on Women’s Health. Dietary patterns were identified using factor analysis.

Outcomes – Five similar dietary patterns were identified for each age group. The main differences related to meat and fish consumption. Patterns emerging among the young women were labeled “semi-vegetarian”, “fruit”, “vegetables & meat”, “high fat foods and snacks” and “reduced fat dairy”. Among the mid-age women, the dietary patterns were labeled “vegetables”, “vegetarian”, “fruit & fish”, “high fats foods, snacks and meat” and “reduced fat dairy”. Dietary patterns among young women were associated with education and smoking status, whereas the patterns among mid-age women showed fewer associations and were more likely to be associated with region of residence. For both the young and mid age women, the “reduced fat dairy” pattern was associated with physical activity.

Conclusion – Future follow-up of these cohorts will help identify whether these differences are age or cohort effects and the impact of these differences on chronic disease outcomes.