Concurrent Session 1: Functional Foods I

Soy isoﬂavone supplementation improves spatial working memory in healthy males

A Thorp1,2, N Sinn1, J Buckley1, A Coates1 and P Howe1,2

1Nutritional Physiology Research Centre and ATN Centre for Metabolic Fitness, University of South Australia
2School of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, South Australia

Background – Women generally perform better at certain memory related tasks than men. Such gender differences in certain aspects of cognitive performance may be attributable to higher levels of circulating oestrogen activating oestrogen beta receptors (ERβ) which are prevalent in brain regions mediating cognitive functions. Soy isoﬂavones and the metabolite equol can activate ERβ. Thus isoﬂavone supplementation in males may lead to improved cognitive performance.

Objectives – To investigate effects of chronic isoﬂavone supplementation on cognition, specifically memory and executive function, in healthy males and to see whether any benefit is dependent on equol production.

Design – 34 healthy males aged 18-70 yrs participated in a 12 week double-blind, placebo controlled cross-over trial. Participants were randomised to take 4 capsules/d containing IsoLife 40 (donated by Frutarom, The Netherlands; 120mg/d isoﬂavone equivalents: 68mg daidzein, 11mg genistein) or placebo for 6 weeks followed by the alternative for a further 6 weeks. Cognitive assessments relating to measures of memory (associative, working, spatial, short- and long-term recall) and executive function (planning, verbal ﬂuency, mental ﬂexibility) were performed at the beginning and end of each treatment period.

Outcomes – Isoﬂavone supplementation signiﬁcantly improved spatial working memory (SWM) (P<0.02), a test in which females consistently perform better than males. Males taking isoﬂavones committed fewer working memory errors (P=0.016) and located the required information in fewer attempts (P=0.014) than while taking placebo. Isoﬂavones did not affect associative, short or long term memory (Paired Associate Learning, Rey’s Auditory Verbal Learning Task) or executive function (Mental Rotation, Digit Span, Trail Making and Letter-Number Sequencing). Effects of isoﬂavones on cognitive performance did not differ signiﬁcantly between equol producers (n=8) and non-producers (n=26).

Conclusion – Isoﬂavone supplementation in healthy males may enhance speciﬁc cognitive processes which are dependent on oestrogen activation.

Exposure to estrogenicity from phytoestrogens in food

BM Thomson

ESR, PO Box 29 181, Christchurch, New Zealand

Background – Phytoestrogens are plant derived chemicals that can mitigate a biological response via an estrogen receptor mechanism. This range of food constituents comprises coumestans, ﬂavonoids, isoﬂavones and lignans that occur in commonly consumed foods such as bread, grapefruit, celery and tea. Since any biological effect will be related to dose, and foods are consumed in combination, it is useful to have a measure of total ‘estrogenicity’ from a typical diet and to know where this is coming from.

Objective – To review the current knowledge of intake of phytoestrogens and assess exposure to total estrogenicity from phytoestrogens in typical Western and Asian diets.

Design – Mean dietary intakes of phytoestrogens, including assessments from Australia and New Zealand, were collated from the literature and combined with relative potency data to derive a dose of estrogenicity for each phytoestrogen, with consideration of bioavailability. Assuming additivity, a total “estrogenic” dose was estimated from the sum of individual phytoestrogens.

Outcomes – Total intake of phytoestrogens is approximately 2.3 mg/kg bw/day for a Western diet and 3.0 mg/kg bw/day for an Asian diet. Genistein (43%), naringenin (18%) and apigenin (10%) make the greatest contribution to estrogenicity from phytoestrogens for an adult Western diet, with the most significant contributing foods being soy-containing processed foods (eg bread), citrus fruits, grain foods and celery. For an Asian diet, estrogenicity is dominated by the isoﬂavones, genistein (83%) and daidzein (9%) from the consumption of soy. Exposure in Western populations is particularly variable, depending on dietary choices.

Conclusions – Phytoestrogens will make an increasing contribution to total estrogenicity in the diet with the increasing use of soy as a food ingredient. Whether Western and Asian peoples respond similarly to these constituents, whether they have positive and/or negative impacts on human health, and whether individual phytoestrogens have an additive effect, remains to be elucidated.