Improving trend of growth of Asian refugee children in the USA: Evidence to support the importance of environmental factors on growth

Zuguo Mei, MD, MPH, Ray Yip, MD, MPH and Frederick Trowbridge, MD, MSc

Introduction
It is well accepted that the growth of well fed, healthy children, from different ethnic backgrounds and different continents is relatively similar, and socioeconomic status is a major determinant of nutritional status.1–4 Many Asian children, particularly those who immigrated to the USA as refugees from Southeast Asia in the late 1970s and early 1980s, were noted to have significantly shorter stature when compared with other low income children in the USA.4–10 The US Centers for Disease Control and Prevention (CDC) Pediatric Nutrition Surveillance System (PedNSS), which has been collecting anthropometric data of low income infants and children participating in various public health and nutrition programs continuously since 1975, provides a unique database to examine the pattern, trends, and determinants of growth status of low income children.11

The majority of the Asian children monitored by the system are of Southeast Asian refugee background. These children were generally low in height and weight when initially assessed. By the middle 1980s, there was clear evidence that their growth status had improved but was still lagging behind the height and weight of children of other races and ethnic backgrounds.5–10 The purpose of this study was to (i) better define the growth trends of Asian children compared with trends among children of other ethnic groups, and (ii) determine the relationship of growth status in infancy to growth attainment at later ages.

Methods
Sources of data
The CDC Pediatric Nutrition Surveillance System
Since 1975, the CDC Division of Nutrition and Physical Activity has assisted states in monitoring key growth and hematologic indicators of nutritional status of low income US children who participate in publicly funded health and nutrition programs such as the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) and the Early Periodic Screening, Diagnosis, and Treatment Program (EPSDT) or who attended clinics funded through Maternal and Child Health Program (MCH) block grants.11–13 This surveillance system provides a framework for tabulating and interpreting state-specific information on the nutritional characteristics of low income children. Since its inception, the participating regions have increased from five states in 1973 to 44 states, the District of Columbia, Puerto Rico, and seven Indian Reservations in 1993. Nearly 5000 clinics provide data to the system, with a total of 7 million records collected annually from approximately 3 million children.

The Special Supplemental Nutrition Program for Women, Infants, and Children
Data for the majority of the infants and children monitored by the PedNSS were based on clinic service records of a Special Supplemental Nutrition Program for the Women, Infants and Children (WIC) and the Early Periodic Screening, Diagnosis, and Treatment Program (EPSDT) or who attended clinics funded through Maternal and Child Health Program (MCH) block grants.11–13 This surveillance system provides a framework for tabulating and interpreting state-specific information on the nutritional characteristics of low income children. Since its inception, the participating regions have increased from five states in 1973 to 44 states, the District of Columbia, Puerto Rico, and seven Indian Reservations in 1993. Nearly 5000 clinics provide data to the system, with a total of 7 million records collected annually from approximately 3 million children.

Key words: height, weight, stunting, growth, anthropometry, Asian refugee children.
The program provides supplemental foods plus health care referrals and nutrition education at no cost to low income pregnant women, breastfeeding and non-breastfeeding post-partum women, infants, and young children up to 5 years of age who are found to be at nutritional risk. In order to qualify to participate in this program, the annual income must fall within 185% of the Federal poverty level. In 1995, the poverty level was US$15,150 for a family of four; 185% of that figure amounted to an income of no more than $28,028 that year for the average family.

Subjects
In order to study the trend in growth status of Asian children and the comparison of growth status among different ethnic groups under 5 years of age, we selected the 12 states (Arizona, Colorado, Florida, Illinois, Indiana, Kentucky, Louisiana, Michigan, Montana, New Jersey, Oregon, and Tennessee) that consistently participated in the PedNSS from 1979 to 1993. During the 15-year period, the 12 states had a total of 180,748 Asian individual records. A total of 17,720 records for white and black children were collected in the same 12 states.

The majority of the Asian children monitored by the PedNSS are of the South-east Asian refugee background. This was evident during the period of 1977–88, when the number of Asian children in the PedNSS increased by 10-fold parallel with the influx of refugees from Cambodia, Laos, and Vietnam to the USA. We did not include in this study states such as California and New York, which already had more non-refugee than refugee Asian residents. For the 12 states included in this study, officials from either the state WIC office or the state nutrition office verified that the majority of Asians enrolled in their programs in recent years were of South-east Asian refugee origin.

In the PedNSS system, height or recumbent length is measured to the nearest 0.1 cm. A measuring board is used to measure the child's recumbent length if the child is less than 24 months, otherwise, a standing stature is measured for child older than 24 months. Weight was measured to the nearest 0.1 kg using a pediatric scale or other beam balance scale. All the records were entered to a standardized paper form or to an automated system in the clinics, then transferred to the CDC PedNSS database.

The new research growth reference
In recent years, several studies have shown that the current National Centre for Health Statistics/World Health Organization (NCHS/WHO) international reference based on the Fels sample (< 2 years of age), and the part based on the national sample (≥ 2 years of age) are not comparable. When the two curves are compared, there is a clear disjunction of the height-for-age and weight-for-height at 24 months of age. Also, the height-for-age curve has a disjunction at 24 months for uppercentiles. These disjunctions make it difficult to compare the growth status of children younger than 2 years of age with that of those older than 2 years of age. In addition, several studies have found that the infancy portion of the current international reference which is based on the Fels sample does not fit with the growth pattern of infants regardless of whether they were breast-fed or formula-fed.

Because of the limitations of the current international growth reference, a new growth reference was developed for research purpose by the CDC Division of Nutrition and Physical Activity, which eliminated the marked disjunction at 24 months. The main advantages of the new research reference are that it is based on a very large sample size and advanced smoothing techniques were used that all the data are drawn from the same data source. Thus it overcomes many of the irregularities seen in the current international growth reference, especially the discontinuity or 'disjunction' in the growth curves at 24 months of age.

The anthropometric indicators
Three growth indices were used for this study: height-for-age, weight-for-age and weight-for-height. A standard deviation (SD) score or Z-score for each index was computed for each child's measurement against the research reference. The individual Z-score is calculated by subtracting the reference median value from the individual value and then dividing that difference by the reference SD value for the given age or height. Low height-for-age, low weight-for-age and low weight-for-height were defined as a value below −2 Z-score of the reference. Based on these definitions, the expected or baseline prevalence for each indicator is 2.3%. An increased prevalence of low height-for-age indicates significant growth stunting for a given population. On an individual basis, low height-for-age, or shortness, can be the result of normal variation of growth or stunting related to a long-term health or nutritional disorders. The Z-score of anthropometric indices allows the combing of age and sex of children to facilitate analysis. The expected mean Z-score is 0 and expected SD of Z-score is 1.0 for the reference population.

Any height-for-age Z-scores below −5 or above +3 were excluded because these extreme values were most likely due to errors in measurement or data entry. For weight-for-age values, the exclusions were Z-scores below −4 or above +5, and for weight-for-height values, the exclusions were Z-scores below −4 or above +5. Mean Z-scores are also used to demonstrate trends and patterns of growth.

Results
Figure 1 summarizes the prevalence of low height-for-age for three ethnic groups of infants and children aged 0 through 59.9 months. The influx of large numbers of Asian refugees in the late 1970s and early 1980s was followed by a peak in the prevalence of low height-for-age among Asian children during 1981 and 1982. During this period, the low height-for-age prevalence for Asian children was two to three-fold higher than that for other ethnic groups of low income children. From 1983 to 1993, the prevalence of low height-for-age began to decline in all the age groups of Asian children. The overall prevalence of low height-for-age declined from 14.3% in the peak year of 1982 to 7.3% in 1993, representing a relative reduction of more than 49% (P < 0.0002, test of trend). During this period, there was a slight increase in the prevalence of low height-for-age for black children. However, this prevalence was stable in white children. By 1993, the prevalence of low height-for-age for Asian children was very close to that of other ethnic groups.

In order to decide whether the reduction in the prevalence of low height-for-age among Asian children was related to a
reduction in a subpopulation of children who were very short, or related to a general improvement of the entire height distribution, we used the height-for-age Z-score to compare the age-standardized height distribution for Asian children. Figure 2 compares the height distribution of Asian children aged 0 through 59.9 months for two different time periods. In contrast to the mean height-for-age Z-score of zero for the reference, the mean height-for-age Z-score for Asian children was –0.66 for 1979 through 1981, and –0.11 for 1991 through 1993 (P < 0.0001, by analysis of variance). Also, the height-for-age distribution of the two periods for the two different age groups had a similar variance and shape, without a marked downward skew. Thus, the reduction in the prevalence of low height-for-age observed among Asian children is the result of a general improvement in the entire height distribution over the 15-year period.

Similar to the trend of low height-for-age, Asian children showed a marked decline from 1979 to 1993 in the prevalence of low weight-for-age (P < 0.0001, test of trend), while other ethnic groups remained relatively stable (Fig. 3). The reduction in the prevalence of low weight-for-age was also the result of a general upward shift of the entire weight-for-age distribution over the 15-year period.

The trend of low weight-for-height shown in Fig. 4 suggests that Asian refugee children had a relatively low rate of thinness even in the earlier years, and throughout the years the improvement is slight. The trend of weight-for-height was stable for white and black children.

Figure 5 compares the mean height-for-age Z-scores across age for four cohorts of Asian refugee children grouped according to birth occurred in four different time periods. These four cohorts have a distinct pattern of growth. The earlier cohort had the lowest height-for-age in infancy and continued to have the lowest up to five years of age. In contrast, the later year cohorts were consistently taller. This finding indicates that later childhood growth status is strongly influenced by the status in early infancy. This cohort effect is also true for weight-for-age (Fig. 6).

Discussion

This study indicates a continuation of the improving trend of growth for Asian refugee children, previously observed in the
long-term poor health and nutrition associated with adverse
lence of low height-for-age reflects stunted growth due to
health and nutrition status of their children.
Economic conditions improved, which in turn improved the
communities. Also, throughout the years in the USA, their
vices were likely to be significantly better than in their native
conditions and the availability of health and nutrition ser-
tively poor when they first arrived in the USA, general living
implied that in the interpretation of growth of older children,
interventions for protein–energy malnutrition should be
possibly even during intra-uterine growth. For this reason,
that malnutrition is most likely a process that starts early,
status of infancy or early childhood is a strong determinant of
status during early infancy.
Another possibility is that common factors affecting
infancy. Another possibility is that common factors affecting
nutrition status of later childhood. One possibility is
low weight-for-age (Fig. 3) reflects the high prevalence of
stunting among Asian children.
The significant decline in the prevalence of low height-
for-age and low weight-for-age, as shown by this study, is the
result of a generalized upward shift of the entire height or
weight distribution of the Asian children. This finding indi-
cates that when the prevalence of malnutrition is high, all the
children in a population are affected, not just those in the low
end of the distribution. When conditions improved, all the
children became taller and heavier, and the entire distribution
shifted to the right. This finding implies that the prevalence
of low anthropometry is a useful indicator of the nutritional
status of a population, but we must keep in mind that the
whole population is affected, not just those who fall below a
fixed cutoff.
By 1993, the prevalence of low height-for-age of low
income Asian children (0–59.9 months) reached a range sim-
ilar to that of other ethnic low income children (Fig. 1). How-
ever, Fig. 5 shows that the time required to ‘catch up’ was
different for different birth cohorts. The Asian children who
were older in 1992 belonged to the cohort of children born in
1988. As a group, they were still shorter than were those born
in later years. This cohort effect suggests that the nutritional
status of infancy or early childhood is a strong determinant of
the nutritional status of later childhood. One possibility is
that malnutrition is most likely a process that starts early,
possibly even during intra-uterine growth. For this reason,
interventions for protein–energy malnutrition should be
started during the mother’s pregnancy or the child’s early
infancy. Another possibility is that common factors affecting
health and nutrition exert their influence starting in the fetal
period and continuing throughout childhood. These results
imply that in the interpretation of growth of older children,
whether for a clinical purpose or on a population-based
assessment, it is helpful to take into account their growth
status during early infancy.
Our study has potential limitations commonly found in
surveillance systems that use routine clinical data. Because
the source data come from multiple clinics and the tech-
niques of measurement are not tightly controlled, the quality of anthropometric measurements cannot be guaranteed. However, we checked the data quality for the states in this analysis by using the PedNSS anthropometric data quality assurance indices13 and found it generally high and reasonably stable. The records of the children with missing ages were automatically excluded during the data transaction before it transferred to the PedNSS database. The per cent of missing height/length and weight were 1.4 and 0.8\%, respectively, and biologically implausible value of mean height-for-age Z-score, mean weight-for-age Z-score, and mean weight-for-height Z-score were 0.8, 0.4 and 0.6\%, respectively. Also, not all Asian children included in the analysis were from refugee backgrounds. The PedNSS lacks detailed information on the origin of Asian children and the length of time since their families immigrated to the USA. However, we verified that most of Asian children enrolled in their programs during this time period were of South-east Asian refugee origin by contacting the state WIC or nutrition officials of the 12 states. Both of these limitations are intrinsic to a surveillance system that uses routine clinical data. However, those limitations should not significantly affect the comparison of trends across time, provided that the quality of data and the proportion of Asian children from non-refugee families are reasonably stable over time. The use of the new research reference also may constitute a limitation of the study, but it is important in contrast to the current NCHS/WHO growth reference. Overall, this study demonstrates that routinely collected data from ongoing surveillance can provide highly useful information to address important public health issues.

In summary, the dramatic improvement in growth status observed in subsequent cohorts of Asian refugee children over a 15-year period suggests that better socioeconomic conditions resulted in improved early childhood growth, and in turn, improved growth status in later childhood. It appears that the longer the Asian refugee families have resided in the United States, the better the nutritional status of their children. Alternatively, the results suggest that the longer the children are exposed to a better diet and health services, the taller they grow. The evidence strongly supports the proposition that environmental factors such as diet and access to health services play a major role in the variations of growth often observed among different populations.1–3 It also indicates that the proper evaluation of children’s growth need to take family and early childhood background into account.

Acknowledgements. We would like to thank all state nutrition programs participating in the CDC PedNSS, especially the 12 states that provided the data for this study. We also thank Ellen Borland and Jimmy Simmons for providing data management support.

Improving trend of growth of Asian refugee children in the USA: Evidence to support the importance of environmental factors on growth

Zuguo Mei, Ray Yip and Frederick Trowbridge

美國亞洲難民兒童生長的改善：
支持環境因素對生長的重大意義

摘要

為了更好的解釋亞洲難民兒童移民美國後生長的趨向和模式，我們研究了1979—1993年由疾病控制和預防中心（CDC），兒童營養監測體系（CDC PedNSS）從12個州收集的身體測量數據。結果發現：五歲以下的亞洲難民兒童身高較矮和體重較輕的數目呈進行性的和明顯地下降。到1993年時，亞洲難民兒童的生長狀況與其它人種已相似，這種短期內的顯著改善，強烈地指出了亞洲移民兒童不良的生長狀況主要與社會經濟有關的營養和健康因素有關，遺傳因素是次要的。作者分析了不同時期出生的兒童發現，在嬰兒時人體測量數據較低者，可預知兒童晚期個體較小。
References