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Type 2 diabetes (T2D) caused by the complex interplay of both genetic and environmental factors, is a serious 
public health issue. Compelling evidence from epidemiological studies has highlighted that an unhealthy lifestyle, 
such as obesity, physical inactivity and poor diet are significant drivers of the epidemic of T2D. Meanwhile, re-
cent genome-wide association studies (GWAS) have identified a large number of T2D and glycemic traits loci. 
Emerging data emphasize the critical role that gene-environment interactions have played in the development of 
T2D. Identifying the genetic, environmental factors and their complex interplays may help elucidate the biologi-
cal pathways of T2D, identify the high-risk groups and characterize heterogeneity in intervention programs. This 
review summarized the studies investigating gene-environment interactions of T2D. 
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INTRODUCTION 
Type 2 diabetes (T2D) has increased rapidly throughout 
the world over the past several decades.1 The total num-
ber of T2D will be up to 438 million by 2030.1 T2D has 
contributed to considerable adverse effects on microvas-
cular and macrovascular complications, which is a huge 
health and economic burden for both individuals and 
health systems.2 T2D is a complex disease that is consid-
ered to be caused by a complex interplay between genetic 
and environmental factors. Recently, more and more stud-
ies have been focusing on interactions between diet or 
lifestyle and genetic factors on T2D. The gene-
environment interactions (G×E) study is meaningful to 
unveil the mechanism of T2D, identify the high risk indi-
viduals, distinguish the heterogeneity in response to the 
intervention and optimize the interventions.3 Elucidating 
these interactions could help improve precision preven-
tion of T2D.4 This review summarized recent advances in 
investigations of lifestyle, genetic risk factors as well as 
their interactions for T2D. 

In this review, we focused on the modifiable environ-
mental risk factors, such obesity, physical activity, sleep 
and habitual diet. Hence, ageing was not discussed in our 
review. Genetic factors were selected based on both the 
candidate approach and genome-wide association study 
(GWAS). 

 
ENVIRONMENTAL RISK FACTORS OF T2D  
Obesity  
Overall obesity and central obesity were both risk factors 
for T2D. Elevated body mass index (BMI) as an indicator 
of general adiposity was well recognized as a risk factor  

 
 

for insulin resistance and diabetes.5 Moreover, the rela-
tionship between BMI and risk of insulin resistance and  
T2D showed heterogeneity across different populations. 
Evidence has suggested that Asians have lower level of 
BMI in comparison with Europeans when they were rec-
orded as T2D;6 this risk difference may reflect a genetic 
susceptibility. It is worth noting that even among Asian 
population, variation exists in the predisposition to diabe-
tes. A study conducted in Singapore involving three eth-
nics namely Chinese, Malays and Indians showed Indians 
were at highest genetic predisposition to T2D in compari-
son with other ethnics. The difference between Chinese 
and Malays could be explained by general adiposity. 
However, there were still unexplained factors contributed 
to the insulin resistance in Indians after adjustment for 
BMI and BMI-adjusted waist circumference.7   
 
Physical activity 
A dose-dependent inverse association was observed be-
tween physical activity and risk of T2D, which may be 
partially mediated through decreasing adiposity. All types 
of physical activities including ≤7 hours leisure-time,  
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vigorous or low intensity physical activities were associ-
ated with a lower risk of T2D.8 Further, sedentary behav-
ior was an risk factor of T2D independent of physical 
activity.9 Individuals can be active once they reach the 
recommended physical activity level and be sedentary as 
well. 
 
Sleep duration and quality 
The relationship between sleep duration and risk of T2D 
was U-shaped; both short and long sleep duration were 
associated with a higher risk of T2D through activation of 
pro-inflammatory and increasing arterial stiffness.10-12 

Sleep patterns and sleep qualities were also associated 
with risk of T2D.13 

 
Smoking 
Smoking is the leading avoidable risk factor for a wide 
range of diseases. The relationship between cigarette 
smoking and risk of T2D has been widely studies: smok-
ing was associated with an increased risk of T2D for the 
current smokers in a dose-dependent manner.14 An Pan et 
al. showed that both active and passive smoking were 
associated with a higher risk of T2D. The observed risk 
substantially reduced among the long-time quitters.15 In 
addition, weigh gain with smoking cessation was associ-
ated with a higher risk of T2D,16 which indicated during 
the smoking cessation, weight management was critical 
for reducing the risk of T2D.  

 
Diet  
Evidence of the relationship between individual nutrients, 
foods and risk of T2D has been extensively investigated. 
Low circulating concentrations of vitamin D was associ-
ated with an increased risk of T2D; and the relationship 
has been warranted to be causal in Mendelian Randomi-
zation studies.17,18 Red and processed meat was positively 
associated with an increased risk of T2D;19 whereas low-
fat dairy products consumption and coffee consumption 
were associated with a lower risk of T2D.20,21 

Dietary pattern approach, an emerging approach con-
sidering the interactions between nutrients and physical 
properties of goods has been widely used to examine the 
associations between diet and health outcomes.22 Healthy 
dietary patterns, such as Mediterranean diet, alternative 
Healthy Eating Index-2010 (AHEI-2010) and Dietary 
Approaches to Stop Hypertension diet (DASH), which all 
highlight whole grains, fruits, vegetables, nuts and leg-
umes were associated with a lower risk of T2D,23 whereas 
Western dietary pattern, which emphases red meat, fat 
and sugar sweetener beverages was associated with a 
higher risk of T2D.24 

 
Adherence to healthier lifestyle is beneficial for the T2D 
patients 
Besides the relationship between environmental risk fac-
tors and risk of T2D among the general population, ad-
herence to a healthy lifestyle could also benefit the T2D 
patients to decrease the subsequent morbidity and mor-
tality. Evidence showed that smoking cessation without 
subsequent weight gain was associated with a lower risk 
of cardiovascular disease and all-cause mortality among 
the patients with T2D. Even among the T2D patients with 

a subsequent weight gain after quitting smoking, the in-
verse association was persistent between cessation and 
mortality.25 Moreover, higher consumption of nuts and 
polyunsaturated fatty acids (PUFAs) were also associated 
with a reduced risk of development of cardiovascular 
disease among the patients with T2D.26,27 

 
GENETICS OF T2D  
Although the environmental risk factors in relation to risk 
of T2D have been extensively examined, it has been well 
noted that the responses to the environmental factors var-
ies substantially between individuals; and such difference 
in susceptibility to T2D risk was considered to have a 
heritable component. Genetic studies have demonstrated 
that T2D risk is substantially influenced by genetic fac-
tors. It has been estimated that approximately 35% of 
T2D could be explained by heritability.28 Approaches 
used to identify disease-causing genes have evolved rap-
idly. The traditional methods for mapping disease-causing 
genes include linkage analysis and candidate gene ap-
proach.29 Over the past several decades, many genes in-
cluding NOTCH2, ZBED3, PPARG, IRS1, WFS1, 
HNF1A, HNF1B, HNF4A, TCF7L2, and ADIPOQ have 
been identified by the aforementioned methods.30-33 

In the past decade, waves of GWAS featuring larger 
samples, denser genotyping arrays supplemented and 
richer ethnic diversity have brought the total number of 
independent T2D associations to more than 400 loci in-
cluding European, Asian, Hispanics/Latinos and African-
American ancestry.34-37 The first GWAS by meta-analyses 
of Glucose and Insulin-Related Traits Consortium (MAG-
IC) identified MTNR1B influenced fasting glucose lev-
els38 and the GWAS meta-analysis of T2D by the DIA-
GRAM consortium identified six novel loci.39 In other 
ethnic groups, a variant near PAX4 as a novel locus for 
T2D in Chinese was identified in a meta-analysis of 
GWAS.40 PAX4 mutations were first found in Asian pop-
ulation41 but seldom identified in those of European de-
scent.42 In the Middle East and African populations, T2D 
susceptibility loci identified through GWAS showed dif-
ferential associations with T2D in two Arab popula-
tions,43 requiring larger sample size study and GWAS 
meta-analysis to clarify the true genetic association with 
T2D and glycemic traits in other ethnic groups. Mahajan 
et al. conducted a multi-ethnic meta-analysis of GWAS, 
and they observed significant excess in the directional 
consistency of T2D risk alleles across ancestry groups 
and identified seven new T2D susceptibility loci,44 Alt-
hough the genetic prediction did not perform better pre-
diction beyond the traditional environmental risk factors, 
genetic disposition could be helpful to stratify the popula-
tion to provide precision prevention strategies on high-
risk groups.45,46 In addition, a new method of generating 
polygenic predictor including 2.1 million of common 
DNA variants to quantify the obesity susceptibility pro-
vided new opportunities for deriving polygenic predictor 
of T2D to improve the performance of prediction.47 

 
RECENT STUDIES × LIFESTYLE INTERAC-
TIONS 
Though GWASs have identified more than 400 loci ro-
bustly associated with T2D and glycemic traits, the iden-
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tified genetic variants so far explained a minority of T2D 
heritability.48 The G×E study is useful for gaining a better 
understanding of the biological pathway, explaining the 
missing heritability and identifying the susceptible popu-
lation.49,50  Selected gene × environment interaction are 
presented in Figure 1. 
 
Candidate gene × lifestyle  
The candidate-gene approach has identified several loci 
that play substantial roles in the T2D etiology. Variants 
within these loci have been studied for G×E study with 
related lifestyle risk factors on T2D and glycemic traits. 
For instance, PPARG gene is an extensively studied can-
didate gene for T2D.51-57 A cross-sectional, population-
based study suggests an interaction between Pro12Ala 
polymorphism of PPARG2 and dietary monounsaturated 
fatty acids (MUFA); obese people with Ala-12 allele have 
higher insulin resistance when their MUFA intake is 
low.51 Nelsona et al studied 216 Hispanic pedigrees (1850 
nuclear families) and 236 non-Hispanic white (NHW) 
pedigrees (1240 families) and found that the Pro12 allele 
was associated with T2D only among those with low 
physical activity, or high polyunsaturated fat intake in 
NHWs.54 A study of general population indicates strong 
genetic and nutritional interaction on T2D risk at the 
PPARG variants found that high fat consumption was 
associated with an increased T2D risk among GG and CC 
homozygotes, but not in A and T carriers.55  

IRS1 gene plays an important role in insulin function. 
In 1993, it was reported that Gly972Arg polymorphism in 
IRS1 was associated with T2D.58 Recent years, several 
studies have investigated the interaction effects between 
SNPs in IRS1 gene and environmental factors on T2D 
risk. Cross-sectional population-based surveys indicated 
significant and consistent interactions between circulating 
25(OH)D and IRS1 variants on insulin resistance in the 
Boston Puerto Rican Health Study, African-American, 

non-Hispanic white, and Hispanic. Participants with dif-
ferent genotypes of IRS1 rs2943641 exhibited differential 
benefited from high circulating 25(OH)D with the re-
duced risk associated with insulin resistance and T2D 
risk.59 Furthermore, the Malmö Diet and Cancer cohort 
demonstrated that IRS1 rs2943641 interacted with carbo-
hydrate and fat intakes on T2D incident. A protective 
association was restricted to women with low carbohy-
drate diet intake and men with low fat diet intake.60 Of 
note, the inconsistencies and the significant findings need 
to be replicated.  

 
GWAS genes × obesity  
Among the GWAS identified diabetes loci,34,61-65 TCF7L2 
gene, which is discovered by linkage studies initially, is a 
consistently replicated gene for T2D.66-70 Previous meta-
analysis demonstrated that the genetic effect of TCF7L2 
rs7903146 on diabetes risk can be modified by BMI: the 
lower the BMI was, the higher the gene effect was.68 A 
case-cohort study of 2318 individuals and 724 incident 
T2D cases from the European Prospective Investigation 
into Cancer and Nutrition (EPIC)-Potsdam cohort showed 
the TCF7L2 rs7903146 T-allele modified the inverse as-
sociation between whole-grain intake and T2D risk. 
Whole-grain intake was inversely associated with T2D 
risk among rs7903146 CC homozygote carriers; the T-
allele negated the protective effect of whole-grain in-
take.69 EPIC-Inter Act study also illustrated an interaction 
between TCF7L2 variants and coffee intake on risk of 
T2D.71 In addition, TCF7L2, NOTCH2 and ZBED3 
showed significant interactions with dietary fiber intake 
on incident T2D in a large cohort over 15 years follow 
up.72 

 
GWAS genes × diet  
Several variants were also shown to interact with diet or 
lifestyle factors in relation to T2D risk. For example, low 

 

  
 
Figure 1. Selected gene-environment interactions on type 2 diabetes. Environmental factors including whole grain intake, coffee con-
sumption, Mediterranean dietary pattern, rice consumption, physical activity, fish consumption may modify the association between ge-
netic susceptibility to T2D.  
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birth weight might influence the genetic association of 
common variants (HHEX, CDKN2A/2B and JAZF1) 
with T2D.73 A case-control study among 7,052 partici-
pants with high cardiovascular risk showed consistent 
gene-diet interactions with adherence to the Mediterrane-
an diet both for the FTO-rs9939609 and the MC4R-
rs17782313, suggesting that the association of the FTO-
rs9939609 and the MC4R-rs17782313 polymorphisms 
with T2D depends on overall diet habits and that adher-
ence to the Mediterranean diet may counteract the genetic 
predisposition.74 In addition, the EPIC-Norfolk study 
found no evidence of interaction between Mediterranean 
diet and GCKR for lipids or HbA1c.75 However, this is a 
cross-sectional study, which does not allow temporal rela-
tionships to be examined. A large two years dietary inter-
vention study demonstrated that carriers of the risk alleles 
of FTO variant rs1558902 may benefit more in reducing 
insulin resistance if they choose high-fat weight-loss diets 
rather than low-fat diets, but the association between FTO 
variants rs9939609 and insulin sensitivity was not modi-
fied by macronutrient intakes.76 It suggested a protective 
association between vegetables and fish consumption and 
hypertriglyceridemia dependent on the genetic back-
ground. In particular, high fish intake diet may benefit 
TT-genotype carriers of the GCKR variants more and 
CC-genotype carriers may derive more benefits from a 
high consumption of vegetables.77  Meta-analyses illus-
trated that MTNR1B variant rs1387153 with each addi-
tional 1% carbohydrate intake carrying T allele, was as-
sociated with a 0.003 mmol/L higher fasting glucose.78 

The genetic effect of PEPD variant rs3786897 on T2D 
risk may be modulated by MUFA intake, which suggest-
ed that high MUFA intake had a favorable effect among 
GA-genotype and AA-genotype carries.79  
 
GWAS genes × physical activity 
Besides the habitual diet factors, the associations between 
gene and risk of T2D were also modified by physical ac-
tivity. The associations between FTO and obesity and 
T2D were modified by habitual physical activity. A meta-
analysis showed that the risk estimates of FTO on obesity 
reduced 30% among the individuals who were physical 
active in comparison with those sedentary individuals,80 
which indicated physical activity could compromise the 
genetic susceptibility.   

 
T2D sub-phenotypes gene and environment interaction 
on T2D 
T2D is a heterogeneous disease involving different path-
ways: impaired beta cell function and insulin resistance. 
To be more specific, cluster method has suggests five 
pathways driving T2D, namely beta cell cluster, proin-
sulin cluster, obesity cluster, lipodystrophy cluster and 
liver/lipid cluster.81 Evidence has suggested that using 
T2D sub-phenotype could be the direction to identify the 
high risk population to provide strategies for precise pre-
vention.82 Recently, evidence has shown that genetic 
markers associated with glycemic traits and beta-cell 
function in children are associated with T2D of chil-
dren.83 

 
 

FUTURE DIRECTION 
In future, genome-wide interaction analyses will signifi-
cantly advance our understanding of the development of 
T2D. GWAS analysis of main effects might miss im-
portant genetic variants specific to subgroups of the popu-
lation. Therefore, novel innovative analytical methods to 
maximize statistical power in genome-wide interaction 
analyses need to be developed.  In addition, with the rapid 
development of comprehensive “omics” approaches, how 
and to what extent genes regulate products at genomics, 
epigenetics, transcriptomics, proteomics, and metabolom-
ics levels in response to exposed non-genetic factors be-
comes the subject of intense investigation. Information 
from studies of metabolomics and gut microbiome un-
veiled by omics technologies will provide new insights on 
the gene-environment interaction role in T2D and glyce-
mic traits. The gene-environment interaction using “om-
ics” approaches in large cohorts need to be conducted in 
the future. 

 
CHALLENGES AND SUMMARY 
Despite progress in understanding gene-environment in-
teraction underlying the development of T2D, we are still 
facing several challenges. First, measurement errors in the 
assessment of environmental factors such as diets and 
lifestyle are inevitable. It has been demonstrated that 
moderate decreases in the accuracy of measurement of 
environmental factors may lead to a 20-fold reduction in 
statistical power to detect an interaction.84 Second, a ma-
jor factor limiting progress in this field is the limited sta-
tistical power to detect gene-environment interactions in 
T2D accurately.85 A large sample size of population-wide 
biobanks will considerably contribute to the identification 
of gene-environment interactions on complex diseases. 
Third, previous inconsistent results need replication or 
more detailed follow-up.  It is encouraged to conduct rep-
lication studies and to publish both positive and negative 
findings in other cohorts in a variety of populations to 
indicate that this association is not limited to specific 
population.85 

In summary, substantial progress in identifying genetic, 
environmental markers and their interplays underlying the 
development of T2D have been made. Understanding the 
genetic basis of diabetes and the extent to which geno-
types modify the response to risk factors and preventive 
interventions might help tackle the rising prevalence of 
diabetes, improve treatment, and optimize the quality of 
life. 
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