Original Article

Effects of an individualized nutrition intervention on the respiratory quotient of patients with liver failure

Xing Liu MD1,2, Ming Kong PhD1,3, Xin Hua MSc4, Yinchuan Yang BSc1, Manman Xu MSc1, Yanzhen Bi MD1, Lu Li MD1, Zhongping Duan PhD1,3, Yu Chen PhD1,3

1Difficult & Complicated Liver Diseases and Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
2Department of Infectious Disease, Linyi People’s Hospital, Linyi, China
3Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
4Department of Clinical Nutrition, Beijing YouAn Hospital, Capital Medical University, Beijing, China

Background and Objectives: Malnutrition and energy metabolism disorders are characterized by a low respiratory quotient in patients with liver failure and often lead to poor prognosis. Therefore, early nutrition interventions are crucial for patients with liver failure to ameliorate abnormal metabolic status and malnutrition. This study explored the effect of an individualized nutrition intervention on the respiratory quotient of patients with liver failure. Methods and Study Design: An individualized 2-week nutrition intervention was conducted on patients with nutritional risk caused by liver failure according to patient resting energy expenditure. Patients were separated into two groups for further analysis according to whether their energy intake reached 1.2 times their resting energy expenditure. Results: Fifty-two patients with nutritional risk caused by liver failure were enrolled. Their average respiratory quotient was 0.79 (0.76–0.84) at the baseline. Patients with an energy intake of ≥1.2 times their resting energy expenditure had a higher respiratory quotient and lower scores on the model for end-stage liver disease and Child–Pugh test than those with an energy intake of <1.2 times their resting energy expenditure at weeks 1 and 2 after the intervention. Moreover, no significant differences were observed between the two groups at the baseline. Respiratory quotient was negatively correlated with the model for end-stage liver disease and Child–Pugh scores. Conclusions: Individualized nutrition interventions with an energy intake ≥1.2 times the patient’s resting energy expenditure can effectively improve the respiratory quotient and reduce disease severity in patients with nutritional risk caused by liver failure.

Key Words: liver failure, energy metabolism, resting energy expenditure, respiratory quotient, individualized nutrition intervention

INTRODUCTION
The liver is a central regulator of energy metabolism and plays a critical role in the metabolism of nutrients. Extensive necrosis of hepatocytes can be observed when non-chronic liver failure occurs, which impairs liver function and leads to malnutrition and various energy metabolism disorders. Malnutrition is a serious complication of liver disease and is almost universal in patients with end-stage liver disease (ESLD).1,5 The degree of malnutrition is correlated with the severity of hepatic disease regardless of the cause.6,8 Malnutrition leads to increased morbidity and mortality rates8,12 in patients with ESLD, both before and after liver transplantation.2,13,14 Therefore, conducting nutritional intervention for patients with liver failure at an early stage is vital.

Respiratory quotient (RQ)15,16 is considered an excellent indicator of substrate oxidation, which is the ratio of the amount of carbon dioxide produced to the amount of oxygen consumed. The metabolism substrate of patients with ESLD is similar to that of healthy individuals after 3 days of starvation.17–19 Impaired glycogen storage and insulin resistance result in earlier and more excessive use of fats and proteins as fuel sources.20 This leads to increased free fatty acid and ketone body production; moreover, a significant correlation has been reported between free fatty acid production and fat oxidation rate in cirrhotic patients.21 Low RQ has been frequently observed in patients with ESLD. Furthermore, significantly lower RQ has been reported in patients with acute-on-chronic liver failure (ACLF) than in patients with cirrhosis or chronic hepatitis B. In patients with ACLF, the RQ of nonsurvivors is significantly lower than that of survivors.22 Therefore, RQ is useful for monitoring changes in energy metabolism and may be related to the prognosis of patients with liver failure.

Corresponding Author: Dr Yu Chen, Difficult & Complicated Liver Diseases and Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, No. 8 Xitoutiao, Fengtai District, Beijing 100069, China. Tel.: +86 010 839 97157; Fax: +86 010 632 95285 Email: chybeyond@163.com
A late evening snack (LES) is recommended by both the European Society for Clinical Nutrition and Metabolism guidelines and the American Society for Parenteral and Enteral Nutrition for improving the catabolic state. Many studies have discovered that LESs can improve fasting RQ and quality of life in patients with cirrhosis, moreover, one study reported that a high-frequency diet strategy is effective for improving RQ and is beneficial to patients with cirrhosis. The fasting RQ of patients with ACLF also significantly improved after LES supplementation.

However, no research has been conducted on improving RQ in patients with liver failure through individualized nutrition intervention. Therefore, we performed nutritional risk screening of patients with liver failure using nutritional risk screening 2002 (NRS-2002). We also established a nutrition support team (NST) consisting of physicians, dietitians, pharmacists, and nurses who conducted an individualized nutrition intervention on the basis of comprehensive internal medicine treatment for patients with nutritional risk caused by liver failure. The purpose of this study was to explore the effect of an individualized nutrition intervention on RQ in patients with liver failure.

METHODS

Patients

This study was conducted from December 2016 to July 2018 at the Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University. A total of 52 patients with nutritional risk caused by liver failure were enrolled in the study. Of these, 2 cases were acute liver failure (ALF), 1 case was sub-acute liver failure (SAFL), 49 cases were ACLF. Of the ACLF cases, 42 cases were hepatitis B virus-related ACLF, six were caused by alcohol, and one had an unknown cause. The diagnosis of liver failure was based on the guidelines of the 13th Asia-Pacific Congress of Clinical Microbiology and Infection Consensus. None of the patients with liver failure had a history of thyroid dysfunction, neoplasia, diabetes mellitus, or other diseases that can potentially affect energy metabolism. None had hepatic encephalopathy, gastrointestinal bleeding, or fever during the study. None of the patients were administered drugs that could affect energy metabolism. Each participant signed an informed consent form.

Study design

We screened patients with liver failure for nutritional risk using the NRS-2002, and those with nutritional risk caused by liver failure were enrolled in the study. The energy intake of each patient was assessed based on 24-hour dietary records. The resting energy expenditure (REE) and fasting RQ of each patient was measured by indirect calorimetry at the baseline and once each week. The precise energy requirements of patients were determined according to their REE. The individualized nutrition intervention was conducted by NST and lasted for 2 weeks on the basis of comprehensive internal medicine treatment for patients with nutritional risk caused by liver failure. All patients were provided with six meals per day and snacks between breakfast, lunch, and dinner and before going to bed. The American Society for Parenteral and Enteral Nutrition suggests that patients with ESLD have an energy requirement of 1.2–1.4 times their REE. Based on an energy intake of 1.2 times their REE, all patients were divided into two groups: one with an energy intake of no less than 1.2 times their REE (≥1.2REE) and one with an energy intake of less than 1.2 times their REE (<1.2REE). We then explored the effects of the individualized nutrition intervention on RQ in patients with liver failure.

Anthropometric variables

Body height and weight were measured using a height/weight scale (RGZ120, Wuxi Weighter Factory, Wuxi, China), and the precision of height and weight measurements were to 0.1 cm and 0.1 kg, respectively. Body mass index (BMI) was calculated as kg/m². Triceps skinfold thickness (TSF) was measured at the midpoint between the olecranon and acromion of the left arm with a skinfold caliper (Changshu Instrument Company, Changshu, China). Midarm circumference (MAC) was measured at the same site as TSF with a tape measure.

To reduce operational error, TSF and MAC were consecutively measured three times and then the average was recorded. Midarm muscle circumference (MAMC) was calculated using the following formula: MAMC (cm) = MAC (cm) - π x TSF (cm).

Laboratory variables

We collected patient demographics, clinical data, and laboratory parameters at the baseline and on a weekly basis. An Olympus Automatic Biochemical Analyzer AU5400 (Olympus, Tokyo, Japan) was used to measure serum biochemical parameters. The severity of liver failure was assessed according to the model for end-stage liver disease (MELD) and Child–Pugh scores.

Fasting RQ and REE

Before indirect calorimetry was performed, patients stayed in bed at least 30 minutes and fasted for at least 8 h in the morning. The humidity of the quiet room was maintained at 45%–60% with a temperature of 24°C–26°C. REE and fasting RQ were measured using the cardiorespiratory diagnostics investigation system for nutrition metabolism (Medgraphics corporation, Saint Paul, MN, USA), and the gas and volume were calibrated before performing tests. The Weir formula, REE (kcal) = 5.50 VO₂ + 1.76 VCO₂−1.90 TUN, was used for calculating the actual REE, and the Harris–Benedict formula was used for calculating the predicted REE. RQ was calculated as VCO₂/VO₂.

Nutrition intake

The energy intake of carbohydrates, proteins and fats accounted for 74%, 10%, and 16%, respectively, in all enrolled patients. The precise energy requirements for
Table 1. Baseline characteristics of patients in the two groups

<table>
<thead>
<tr>
<th></th>
<th><1.2REE group</th>
<th>≥1.2REE group</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number, n (%)</td>
<td>30</td>
<td>22</td>
<td>—</td>
</tr>
<tr>
<td>Women, n (%)</td>
<td>6 (20.0)</td>
<td>2 (9.1)</td>
<td>0.491</td>
</tr>
<tr>
<td>Age (y)</td>
<td>46.3±12.4†</td>
<td>41.6±11.4</td>
<td>0.168</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>23.9±3.7</td>
<td>23.6±3.7</td>
<td>0.813</td>
</tr>
<tr>
<td>Etiology, n (%)</td>
<td></td>
<td></td>
<td>0.113</td>
</tr>
<tr>
<td>HBV</td>
<td>27 (90.0)</td>
<td>16 (72.7)</td>
<td></td>
</tr>
<tr>
<td>Alcohol</td>
<td>3 (10.0)</td>
<td>3 (13.6)</td>
<td></td>
</tr>
<tr>
<td>Unknown reason</td>
<td>0 (0.0)</td>
<td>3 (13.6)</td>
<td></td>
</tr>
<tr>
<td>Classification, n (%)</td>
<td>0 (0.0)</td>
<td>3 (13.6)</td>
<td>0.138</td>
</tr>
<tr>
<td>ALF and SALF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACLF</td>
<td>30 (100)</td>
<td>19 (86.4)</td>
<td></td>
</tr>
<tr>
<td>Ascites, n (%)</td>
<td>24 (80.0)</td>
<td>14 (63.6)</td>
<td>0.189</td>
</tr>
<tr>
<td>Child-Pugh score</td>
<td>11.0, 10.0-12.0</td>
<td>10.5, 10.0-12.0</td>
<td>0.823</td>
</tr>
<tr>
<td>MELD score</td>
<td>25.5, 20.5-28.3</td>
<td>22.0, 19.0-24.3</td>
<td>0.065</td>
</tr>
<tr>
<td>Energy intake (kcal/d)/REE</td>
<td>0.84, 0.64-0.93</td>
<td>0.87, 0.74-1.23</td>
<td>0.255</td>
</tr>
<tr>
<td>RQ</td>
<td>0.78, 0.75-0.82</td>
<td>0.79, 0.77-0.84</td>
<td>0.163</td>
</tr>
<tr>
<td>REE (kcal/d)</td>
<td>1576, 1268-1641</td>
<td>1528, 1338-1660</td>
<td>0.879</td>
</tr>
<tr>
<td>TSF (mm)</td>
<td>17.8, 10.5-27.8</td>
<td>14.0, 7.3-22.8</td>
<td>0.374</td>
</tr>
<tr>
<td>MAMC (cm)</td>
<td>21.9±3.0</td>
<td>22.5±2.7</td>
<td>0.435</td>
</tr>
<tr>
<td>ALT (IU/L)</td>
<td>98.1, 55.1-352</td>
<td>93.1, 41.8-157</td>
<td>0.578</td>
</tr>
<tr>
<td>AST (IU/L)</td>
<td>144, 87.7-227</td>
<td>189, 62.1-199</td>
<td>0.308</td>
</tr>
<tr>
<td>TBIL (μmol/L)</td>
<td>381±193</td>
<td>314±133</td>
<td>0.164</td>
</tr>
<tr>
<td>Albumin (g/L)</td>
<td>32.3, 30.7-33.2</td>
<td>31.8, 26.7-35.8</td>
<td>0.598</td>
</tr>
<tr>
<td>GLU (mmol/L)</td>
<td>4.8, 3.9-5.4</td>
<td>4.6, 4.0-4.8</td>
<td>0.578</td>
</tr>
<tr>
<td>eGFR (ml/min)</td>
<td>111±20.1</td>
<td>115±19.0</td>
<td>0.435</td>
</tr>
</tbody>
</table>

HBV: hepatitis B virus; ALF: acute liver failure; SALF: subacute liver failure; ACLF: acute-on-chronic liver failure; MELD: model for end-stage liver disease; REE: resting energy expenditure; RQ: respiratory quotient; TSF: triceps skinfold thickness; MAMC: midarm muscle circumference; ALT: alanine aminotransferase; AST: aspartate aminotransferase; TBIL: total bilirubin; GLU: fasting glucose; eGFR: estimated glomerular filtration rate
†Mean±standard deviation (all such values).
§Median, interquartile range (all such values).

Statistical analysis
Mean ± standard deviation, median, or interquartile range was used to describe continuous variables, and frequency or percentage was used to describe categorical variables. The χ² test and Fisher’s exact test were used to analyze categorical variables. The independent sample t test and Mann–Whitney U test were used to analyze continuous variables. Differences in fasting glucose, TSF, and MAMC were analyzed using the paired t test or Wilcoxon signed rank test in each group. Pearson’s correlation coefficient was used to evaluate correlations of RQ with MELD and Child–Pugh scores. SPSS 19.0 (SPSS, Inc., an IBM Company, Chicago, IL) was used for analysis, and p<0.05 was considered statistically significant.

RESULTS
Baseline characteristics of patients in the two groups
No statistically significant differences were observed between the two groups at baseline with respect to demographics, etiology, energy intake, energy metabolism, disease severity, anthropometric variables, or laboratory data (Table 1).

Effects of individualized nutrition intervention on fasting RQ
At the baseline, the average RQ was 0.79 (0.76–0.84) and no significant difference in RQ was observed between the two groups (0.79, 0.77–0.84 vs 0.78, 0.75–0.82, p=0.163). The group with an energy intake of ≥1.2REE at 1 week and week 2 after the individualized nutrition intervention (wk1: 0.87, 0.82–0.96 vs 0.79, 0.74–0.85, p=0.003; wk2: 0.83, 0.81–0.88 vs 0.78, 0.74–0.82, p=0.004) (Figure 1).

Effects of individualized nutrition intervention on MELD and Child–Pugh scores
No significant difference was observed between the two groups in terms of MELD score or Child–Pugh score at the baseline (22.0, 19.0–24.3 vs 25.5, 20.5–28.3, p=0.065; 10.5, 10.0–12.0 vs 11.0, 10.0–12.0, p=0.823). The ≥1.2REE group had lower MELD and Child–Pugh scores than the <1.2REE group at week 1 and week 2 after the individualized nutrition intervention (wk1: 18.0, 16.5–21.5 vs 25.0, 17.0–29.0, p=0.01; 10.0, 9.0–11.0 vs 11.0, 10.0–11.0, p=0.045; wk2: 17.5, 15.3–21.8 vs 23.5, 14.8–28.5, p=0.033; 9.0, 7.3–10.0 vs 10.5, 10.0–11.0, p=0.007) (Figure 2).

Correlation analysis of RQ with MELD score and Child–Pugh score
For all patients, RQ was negatively correlated with MELD score and Child–Pugh score (r=−0.24, p=0.007; r=−0.35, p<0.001) (Table 2).
Effects of individualized nutrition intervention on anthropometric variables

In patients with liver failure, no significant difference was observed between the two groups with respect to TSF or MAMC at the baseline (Table 1). No significant difference was observed between 2 weeks after the individualized nutrition intervention and the baseline in either group in terms of TSF or MAMC (TSF: \(p=0.428 \), \(p=0.137 \); MAMC: \(p=0.071 \), \(p=0.363 \)) (Table 3).

Side effects

No significant difference was noted between the two groups at the baseline with respect to fasting glucose level (Table 1) or in either group in terms of fasting glucose levels 2 weeks after the individualized nutrition intervention compared with the baseline (\(p=0.215 \), \(p=0.653 \)) (Table 4). Moreover, no obvious side effects associated with individualized nutrition intervention were reported.

DISCUSSION

Malnutrition, which is partly caused by abnormal energy metabolism in patients with liver failure, is almost universal in patients with ESLD and worsens when liver failure occurs. Increased lipid oxidation rates and decreased glucose oxidation rates, which were associated with decreased RQ, were observed in patients with ACLF. RQ is strongly associated with liver function and the severity of liver disease. Nonprotein RQ and malnutrition are both significant independent factors that determine the likelihood of survival in patients with liver cirrhosis. Another study discovered that RQ was significantly lower in patients with ACLF than in patients with liver cirrhosis and that in patients with ACLF, the nonsurvival group had a lower average RQ than did the survival group. According to these findings, RQ may be used as a factor for determining the prognosis of liver failure. Therefore, improving RQ, which is the equivalent of improving the catabolic state, is beneficial to patients with liver failure.

RQ values vary with the metabolism of different substrates: 0.7 for fat, 0.8 for protein, and 1.0 for glucose. In the present study, we discovered that RQ was 0.79 (0.76–0.84) at the baseline in patients with liver failure, indicating an obvious metabolic abnormality. This result is consistent with the findings of other study. If the abnormal metabolic status of patients is not corrected quickly enough, it is detrimental to their recovery. When the NST conducted an individualized nutrition intervention on patients with liver failure, we discovered that an energy intake of \(\geq 1.2 \text{REE} \) could improve patient RQ, MELD score, and Child–Pugh score and that RQ was negatively correlated with MELD score and Child–Pugh score. These results suggested that an individualized nutrition intervention with an energy intake of \(\geq 1.2 \text{REE} \) could improve the RQ of patients with liver failure and reduce the severity of liver failure. The findings and mechanisms of the study are shown in Figure 3.

Serum albumin and prealbumin are synthesized by the liver and are key indicators for evaluating the liver function and nutritional status of patients with hepatopathy. Extensive necrosis of hepatocytes can be observed when nonchronic liver failure occurs and the function of liver synthesis is severely impaired. In the absence of mal-

| Table 2. Correlation analysis of RQ with MELD score and Child–Pugh score |
|-----------------|----|------|
| MELD score | -0.24 | 0.007 |
| Child–Pugh score| -0.35 | <0.001 |

MELD: model for end-stage liver disease; RQ: respiratory quotient.
nutrition in patients with liver failure, albumin and prealbumin levels also decrease significantly. However, patients with liver failure often receive exogenous albumin supplementation. Therefore, serum albumin and prealbumin are not ideal indicators for evaluating the nutritional status of patients with liver failure. Anthropometric variables such as TSF, MAC, and MAMC are primarily used to analyze lean body mass and fat mass and are not affected by ascites or lower limb edemas. Anthropometry is recognized as a basic indicator for evaluating the nutritional status of patients with liver disease and is recommended by the European Society for Clinical Nutrition and Metabolism guidelines.\(^23\) Studies\(^{39,40}\) in which adult patients with chronic liver disease were administered LESs with different amounts of energy (700 kcal vs 200 kcal) over the course of a year reported a significant increase in the accumulation of lean body mass. In our study on patients with liver failure, no significant difference in terms of TSF or MAMC was observed before and after the individualized nutrition intervention in the two groups. The individualized nutrition intervention in this study had a duration of only 2 weeks, which was insufficient for improving the TSF and MAMC of patients with liver failure. The duration of the individualized nutrition intervention should be extended to evaluate the effect on the nutritional status of patients.

Table 3. Effects of individualized nutrition intervention on TSF and MAMC

<table>
<thead>
<tr>
<th>Group</th>
<th>TSF (mm) Baseline</th>
<th>Week 2</th>
<th>p value</th>
<th>MAMC (cm) Baseline</th>
<th>Week 2</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td><1.2REE group</td>
<td>17.8, 10.5-27.8†</td>
<td>16.5</td>
<td>0.137</td>
<td>21.9±3.0‡</td>
<td>21.9±3.6</td>
<td>0.363</td>
</tr>
<tr>
<td>≥1.2REE group</td>
<td>14.0, 7.3-22.8</td>
<td>14.5</td>
<td>0.428</td>
<td>22.5±2.7</td>
<td>22.0±2.4</td>
<td>0.071</td>
</tr>
</tbody>
</table>

REE: resting energy expenditure; TSF: triceps skinfold thickness; MAMC: midarm muscle circumference.

†Mean±standard deviation (all such values).
‡Median, interquartile range (all such values).

Table 4. Effects of individualized nutrition intervention on fasting glucose levels

<table>
<thead>
<tr>
<th>Group</th>
<th>Fasting glucose (mmol/L) Baseline</th>
<th>Week 2</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td><1.2REE group</td>
<td>4.8, 3.9-5.4</td>
<td>4.2</td>
<td>0.653</td>
</tr>
<tr>
<td>≥1.2REE group</td>
<td>4.6, 4.0-4.8</td>
<td>4.5</td>
<td>0.215</td>
</tr>
</tbody>
</table>

REE: resting energy expenditure.

Values are expressed as a median, interquartile range.

Figure 3. Conceptual diagram of the findings and mechanisms of individualized nutrition intervention in patients with liver failure.
Several studies have reported that glucose disturbances, especially hyperglycemia, are related to the progression of liver disease and increased mortality rate in patients with liver cirrhosis.\(^{41-43}\) Moreover, hypoglycemia was also discovered to increase the mortality rate in patients with acute decompensation of liver cirrhosis.\(^{44}\) In our study, we discovered that an individual nutrition intervention with an energy intake of ≥1.2REE had no significant effect on the blood glucose of patients with liver failure. No obvious side effects associated with individualized nutrition intervention were reported. Therefore, the individualized nutrition intervention is a safe treatment method.

In conclusion, an individualized nutrition intervention with an energy intake of ≥1.2REE can effectively and safely improve the RQ of patients with liver failure and reduce the severity of liver failure. Therefore, clinicians must formulate and implement individualized nutrition interventions as early as possible for patients with nutritional risk caused by liver failure and ensure that their energy intake is ≥1.2REE to improve the abnormal metabolic status and even prognosis of patients. The sample size of our study was small and the follow-up time was short; therefore, the sample size must be expanded and the follow-up time must be extended to further explore the effect of individualized nutrition interventions on the prognosis of patients with liver failure.

ACKNOWLEDGEMENTS

The authors thank all participants in the study.

AUTHOR DISCLOSURES

All authors declare no conflict of interest. This work was supported by the National Science and Technology Key Project on “Major Infectious Diseases such as HIV/AIDS, Viral Hepatitis Prevention and Treatment” (Nos. 2017ZX10203020-005, 2012ZX10002004-006, 2017ZX10202203-006, 2017ZX10201201 and 2017ZX10302020-004-002); National Key R&D Program of China (No.2017YFA0103000); Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support (No.ZYLLX201806); “Beijing Municipal Administration of Hospitals” Ascent Plan (No. DFL20151601); and Capital Nursing Research Special Funding Support (No.17HL24).

REFERENCES

21. Kawaguchia T, Ito M, Taniguchia E, Sakata M, Abe M, Koga H et al. Serum level of free fatty acids is associated with

