Case Study

Effects of different parenteral nutrition infusions in a patient with short bowel syndrome

Chia-Chee Weng BScNur1, Yun Chen MD, PhD1,2

1Department of Surgery, Far Eastern Memorial Hospital, Taipei, Taiwan
2Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan

In this case study, we demonstrate the effects of different lipid emulsions on liver function in a 52-year-old woman with short bowel syndrome who was totally dependent on parenteral nutrition. Over a 13-month period after small bowel resection and jejunostomy, we followed the patient’s plasma triglycerides and liver enzyme levels as well as body weight and discomfort levels. During the first 3 months when parenteral nutrition including a lipid emulsion containing 50% soybean oil:50% medium-chain triglycerides was administered daily, the patient reported feeling unwell (experiencing dizziness and palpitations) and her triglycerides and liver enzyme levels rose to 366 mg/dL and 145 U/L (alanine aminotransferase [ALT]), respectively; these levels recovered when this emulsion was discontinued. For the following 9 months, an emulsion containing 80% olive oil and 20% soybean oil was administered, and the patient’s triglycerides (182 mg/dL) did not increase to abnormal levels and liver enzyme levels were only mildly elevated (109 U/L). The patient felt well and her body weight increased from 51 kg to 55 kg during this period. These results suggest that parenteral nutrition with a reduced soybean oil content may better preserve liver function in patients with short bowel syndrome.

Key Words: lipid emulsion, parenteral nutrition, short bowel syndrome, abnormal liver function, hypertriglyceridemia

INTRODUCTION

Short bowel syndrome (SBS) is characterized by a compromised bowel absorptive capacity that is associated with a severely reduced mucosal surface area. SBS often follows extensive surgical resection when the residual bowel function is not sufficient for adequate nutritional supply.1,2 Although most nutrients are absorbed within the proximal 100-150 cm of jejunum, intestinal transit time is very rapid so there is limited nutrient-epithelial contact time.3 As a result, patients experience diarrhea, fluid and electrolyte imbalance, and malnutrition,4,5 and are dependent on parenteral nutrition (PN) and/or intravenous fluids (IV).6

Management of such cases is complex and challenging, in particular for those with a proximal jejunostomy as they may actually secrete more fluid than they ingest.7 Most adults with SBS have <200 cm of residual small bowel, with or without the colon, but absorption is dependent upon the overall surface area and function as well as length of the intestine.8 Moreover, different sections of the intestine are responsible for the distinct absorption of macronutrients, micronutrients (vitamins and minerals), and fluids.9 Hence, the degree of malabsorption is also dependent on the location of the resection and the degree of postoperative intestinal adaptation.9,10 For example, absorption of vitamin B12 and bile cannot occur if the ileum is resected regardless of adaptation of the residual bowel.2 The patients at greatest risk for dehydration and malnutrition are those with an end-jejunostomy and <115 cm, jejunocolostomy and <60 cm (absent ileocecal valve), or jejunoroileal anastomosis and <35 cm of residual small intestine (presence of ileocecal valve and colon).11 Patients with colon in continuity have enhanced energy and fluid absorption and can therefore tolerate greater loss of small intestine.12 The overall treatment goal is intestinal rehabilitation, a process in which the digestive and absorptive capacity of the remnant gastrointestinal (GI) tract is maximized so that the uptake of fluid, electrolytes, and nutrients is enhanced.2 When successful, the patient will receive adequate nutrition during the period of intestinal adaptation after resection, and this may result in a reduced need for PN/IV therapy.

We describe here a case in which a patient with SBS experienced elevated plasma triglycerides and liver enzyme levels and significant general discomfort including dizziness and palpitations while being administered a standardized dextrose/amino acids PN formula plus an emulsion containing soybean oil (50%) and medium/long-chain triglycerides (50%). Liver function and other symptoms improved upon cessation of the lipid emulsion and replacement with a different emulsion containing olive oil (80%) and soybean oil (20%).

CASE REPORT

A 52-year-old female patient presented with SBS with

Corresponding Author: Dr Yun Chen, No 21, Sec 2, Nan-Ya South Rd, Banciao 220, New Taipei, Taiwan.
Tel: 886-2-89667000 ext 2923; Fax:886-2-89665567
Email: ychen@mail.femh.org.tw
Manuscript received 15 May 2014. Initial review completed 23 June 2014. Revision accepted 30 June 2014.
doi: 10.6133/apjcn.2015.24.1.06
total PN (TPN) dependence. She had a past medical history of colon cancer stage 2 status post right hemicolectomy 9 years previously. Frequent ileus was noted thereafter, for which she underwent a near total small bowel resection from the jejunum (50 cm from the Treitz ligament) to the ileum (including the terminal ileum) and a jejunostomy, which were performed at another hospital 1 year earlier. She visited our clinic in February 2013 and was admitted to our hospital for assessment for small bowel transplantation. Her residual small bowel length was about 50 cm with no ileocecal valve and she was placed on the waiting list for small bowel transplantation. The patient experienced one episode of catheter-related infection and port-A removal and replacement by a Hickman’s catheter at our hospital.

Initially, she was given a standardized PN formula (15.3% dextrose and 0.5% amino acids) at a rate of 100 mL/hour for 12 hours, and daily also received 250 mL of Lipofundin® MCT/LCT (20%) emulsion, which contains 25 g soybean oil and 25 g medium-chain triglycerides. Plasma triglycerides and liver enzyme levels were elevated to 366 mg/dL and 145 U/L (ALT), respectively. We decreased the infusion frequency of Lipofundin® MCT/LCT from daily to weekly after 1 week but the plasma triglycerides remained elevated, and she complained of persistent palpitations and dizziness. Therefore, Lipofundin® MCT/LCT was discontinued and her plasma triglycerides level gradually decreased. Subsequently, Oliclinomel N7-1000E®, containing a lipid emulsion (20%) composed of refined olive oil (80%) and soybean oil (20%), was commenced at a rate of 120 mL/hour for 12 hours as the nutrient was available at our hospital. Under this regimen, the patient’s plasma triglycerides did not increase to abnormal levels and liver enzymes were only mildly elevated. Moreover, she did not complain of any discomfort such as dizziness or palpitations after infusion.

We have regularly monitored the patient’s general condition, plasma triglycerides and liver enzyme levels (AST and ALT), and body weight (BW) (see Table 1). The patient has continued on Oliclinomel N7-1000E® which, at the time of this case report, has been given for 9 months. Her body weight has increased from 50 kg to 55 kg since she has been followed at our hospital. Upon initiation of Oliclinomel, her liver enzyme levels did not abruptly increase and her plasma triglycerides have since remained within normal limits. No dizziness or palpitations have been reported.

DISCUSSION

Long-term PN is often associated with complications, and liver disease is widely recognized as the most serious of these. Newborn infants with SBS are particularly susceptible to developing intestinal failure-associated liver disease, ranging from cholestasis to steatosis, cirrhosis, and end-stage liver failure, with a prevalence rate of 85% after receiving PN for more than 100 days. The case fatality rate of 40%-50% seen in such patients is mainly by liver failure or sepsis. In another report, 57% of children who had received TPN for longer than 2 years had biochemical liver abnormalities, with risk factors of younger age at TPN commencement, longer duration of TPN, higher rate of catheter-related infections, and higher volume and energy content of TPN. Furthermore, 94% of patients in this population had liver fibrosis on liver biopsies, and the fibrosis was associated with a shorter length of bowel and a longer duration of TPN. In a recent case study of an adult patient with high output enterocutaneous fistula, PN was the major source of nutrition support with a total of 229 days of PN during the hospital stay. The patient suffered cholestasis and steatosis 3 months after PN was initiated. Her liver function tests (LFT) and gamma-glutamyltransferase (GGT) and triglyceride (TG) levels remained high while the patient was on PN but the LFT and GGT levels returned to normal when PN was stopped due to line sepsis, and LFT, GGT, TG and total bilirubin levels became elevated again when PN was restarted.

It has been suggested that a major contributing factor towards liver complications in patients with SBS may be the soybean oil-based lipid emulsions historically used in PN, which contain predominantly long-chain triglycerides. A recent review has summarized the evidence for the link between liver disease associated with intestinal failure and factors such as the duration and lipid content (long-chain ω-6 >1 g/kg-day) of PN. Improvements in cholestasis have been associated with a reduction or discontinuation of soybean oil-based lipid emulsion and the use of medium-chain triglycerides and α-tocopherol. Combinations of oils may provide optimal nutrition while minimizing hepatic toxicity. Indeed, newer lipid preparations containing ω-3 and ω-6/9 lipids have shown promise as a means of decreasing the incidence of liver complications.

Our case report describes an adult patient who was totally dependent on PN after undergoing a near total small bowel resection (residual length ~50 cm with no ileocecal valve) followed by a jejunostomy. When a lipid emulsion containing 50% soybean oil and 50% medium-chain triglycerides was commenced, the rise in LFTs and triglyceride levels we observed is consistent with results.

Table 1. Clinical parameters during different PN regimens

<table>
<thead>
<tr>
<th>Clinical parameter</th>
<th>Parenteral nutrition regimens</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15.3% dextrose + 0.5% amino acids + Lipofundin® MCT/LCT (20%) (administered from Feb 2013 for 3 months)</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>149</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>145</td>
</tr>
<tr>
<td>Triglycerides (mg/dL)</td>
<td>366</td>
</tr>
<tr>
<td>BW (kg)</td>
<td>50</td>
</tr>
<tr>
<td>Discomfort</td>
<td>Dizzy, palpitations</td>
</tr>
</tbody>
</table>
observed by others in terms of the deleterious effects on the liver produced in SBS patients by PN based on emulsions of soybean oil. Recovery of these levels upon cessation of soybean oil emulsion has also been observed by others and seems to indicate the patient’s malabsorption-associated liver disease is reversible initially. Since the 80% olive oil/20% soybean oil emulsion was introduced 9 months ago, our patient’s LFTs/triglycerides have not risen to abnormal levels, and she has experienced no discomfort, so it might be that PN with reduced soybean oil content is better in SBS patients.

AUTHOR DISCLOSURES
The authors declare no financial or commercial conflict of interest.

REFERENCES
Impact of parenteral nutrition in short bowel syndrome

Case Study

Effects of different parenteral nutrition infusions in a patient with short bowel syndrome

Chia-Chee Weng BScNur¹, Yun Chen MD, PhD¹,²

¹Department of Surgery, Far Eastern Memorial Hospital, Taipei, Taiwan
²Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan

不同肠外营养输液对一位短肠综合症病患的影响

本篇報告一位 52 歲因罹患短腸症综合症需完全依賴靜脈營養治療的女性，因接受不同成分比例的脂肪製劑導致肝功能不同的變化。在小腸切除與空腸造口後十三個月期間，我們追蹤病患的血中甘油三酯、肝臓酶水平、體重與臨床症狀。患者於小腸切除後前三個月初期使用的全靜脈脂肪乳劑成分比例為 50% 大豆油及 50% 中鍵脂肪酸，病人表示有心悸及頭暈的感覺，病人有肝功能異常及高甘油三酯血症，血清升至 336 mg/dL，谷丙氨酸轉移酶(GPT) 為 145 U/L。在中止脂肪乳劑後，這些參數均得到改善。爾後九個月，我們將全靜脈營養脂肪乳劑比例改為 20% 大豆油及 80% 橄欖油，病人表示無心悸及頭暈的感覚，血清甘油三酯下降為 182 mg/dL，谷丙轉移酶（GPT）為 109 U/L，體重由 51 公斤增至 55 公斤。本研究結果表明降低全靜脈營養中脂肪乳劑裡大豆油的比例，對病人的肝功能有好的影響。

关键词：脂肪乳剤、靜脈營養、短腸症、肝功能異常、高三酸甘油脂血症