Mini Review

Paradoxes with weight disorders for health systems

Mark L Wahlqvist MD (Adelaide & Uppsala), FRACP, FAFPHM1,2,3, Shao-Yuan Chuang PhD1

1Division of Preventive Medicine and Health Services Research, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan, ROC
2School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
3Monash Asia Institute, Monash University, Melbourne, Victoria, Australia

The body mass index (BMI) has served public health and clinical medicine well in the recognition of obesity. However, its use has generated some instructive paradoxes and misunderstandings which argue for the appreciation of body compositional disorders (BCD) as such and, in particular, for the parallel evaluation of muscle mass with a definition of ‘orthosarcal’ conditions to enable the early detection of sarcopenia. Across the life-span, and with gender and ethnic differentials, BCD is basic to the full spectrum of nutritionally-related disorders and diseases. In the case of metabolic diseases like diabetes, muscle, fatness and its distribution, and even bone seem to play pathogenetic roles. Optimal body fat and distribution are relevant to child development, maternal health and healthy ageing, with much more to learn about the mechanisms. The economic and societal costs of obesity tend to increase progressively with the BMI, but the health outcomes, at least for mortality, are J-or U-shaped. With some established chronic diseases, like diabetes, renal failure or cardiac failure, overfatness may be protective; sometimes this may be because contaminant fat-soluble endocrine disrupters are segregated in fat tissue. This means that some of the relatively favourable survival in the elderly who have more body fat is at the expense of the health care system. Younger children with chronic energy deficiency, on the other hand, may succumb before expenditure saves them. In these respects, our species is more vulnerable than we have thought. Fortunately, a better understanding of BMI and health is emerging.

Key Words: nutritional economics, obesity paradox, endocrine disrupters, sarcopenic obesity, orthosarcal

PARADOX

As the body mass index (BMI) has received acceptance in public health and clinical medicine, so have its limitations become more apparent. These are fundamentally that it was developed in Caucasians as a way of accentuating the contribution of fat to weight in the numerator and that it applies to sedentary people. Nevertheless, it has served health workers well as they became more familiar with it after its advocacy by George Bray in 19921 although its origins were with Adolphe Quetelet in 1832 and termed BMI by Ancel Keys in 1972.2

There is little doubt that higher BMIs, and presumably excess body fat, can increase mortality across cultural boundaries with an optimal range of 22.5–25.0 kg/m²3 sufficient for WHO to recommend a healthy BMI range for international reference and comparison (18–24.9 kg/m²), but with that for Asian populations lower (suggested range for increasing but acceptable risk of 18.5–23 kg/m²).4,5 The risk for mortality is J-or U-shaped. This risk varies in accordance with age, gender, socioeconomic status, associated personal behaviours, body fat distribution and more.3

Yet several paradoxes have emerged with the growing global prevalence of obesity. The term ‘obesity paradox’ was first used to describe clinical conditions in which a higher BMI was associated with longer survival than with lower BMIs in renal disease (dialysis), cardiac failure and diabetes.6–10 More broadly, the paradoxes include increasing life expectancy in most places where obesity is becoming more common.11,12 the deceptive and concurrent increase in weight as fat and decreases in lean mass as muscle and bone occur,13 the shift with ageing to higher BMIs (which relate increasing weight to decreasing height) which predict longer life expectancy but more disability and disease (including loss of height),14,15 and the finding that, in type 2 diabetes, normal-weight people have a higher mortality than those with higher BMIs.16

LIVING LONGER WITH OBESITY BUT COSTING MORE

For some time, the soaring health, social and economic costs associated with obesity and its consequences in developed economies have created concern about health system affordability and sustainability18–21 while even greater concerns are increasingly expressed about transitional and less developed economies.22,23 There is little doubt that greater disability with obesity contributes to these costs as successive National Health and Nutrition Surveys (NHANES)24 and Health and Retirement Study (HRS)25 reports in the USA show for all age groups.26

Corresponding Author: Prof Mark L Wahlqvist AO, Division of Preventive Medicine and Health Services Research, Institute of Population Health Sciences, National Health Research Institutes, No. 35 Keyan Road, Zhunan Town, Miaoli County, Taiwan 35053, ROC.
Tel: +88637246166 ext 36366; Fax: +88637586261
Email: profmlw@nhri.org.tw
Manuscript accepted 17 September 2012.
Reither et al. forecast that the development of obesity among younger generations will lead to an accumulation of health risks in the community and contribute to more health care expenditure and increased mortality than presently envisaged. This is seen in the impact of the metabolic syndrome, which is closely linked to obesity, which identifies problems in energy regulation with many over fatness-related disorders and diseases and which contributes to disproportionately high medical expenditure among elderly Taiwanese men.

The link between obesity and disability, in its major forms of joint disease, mental health, learning and back ailments, may be bidirectional and this is most evident in children, but also in adults. Thus, there may be a vicious cycle of obesity and disability from early life. With advancing years this cycle will be accentuated by the advent of increasing numbers of obesity-related health problems, some well-known like diabetes and cardiovascular and respiratory disease and others less recognised like neoplastic disease and neurodegenerative disease and mental health problems.

In a major population study of 111,949 examinees in Taiwan, Pan et al confirmed the U-shaped relationship between BMI and all-cause mortality, but found that, even through the so-called normal BMI range, medical expenditure progressively increased and on either side. Especially in the aged, medical expenditure continues to rise with increasing BMI, but there is little if any adverse association with mortality. It would appear, therefore, that there are increased costs associated with the maintenance of favourable life expectancy in the face of the increased obesity prevalence.

It is not just the health costs of obesity which have economic consequences for affected individuals and society, but also the opportunity costs through effects on workforce participation and livelihoods. The added difficulty is that the socio-economically disadvantaged are at added risk of obesity in any case.

At a time of continuing international financial crisis, in the wake of the global financial crisis of 2008, expenditure to limit the expression of mortality and accommodate disability represents hidden health vulnerability in the population. This is now evident in those countries in the Euro-zone with demanding terms for debt alleviation, including cut-backs to health system funding. So whereas the ability to store energy as fat may have represented survival advantage at various points in the human experience, that may have changed for at least the immediate if not the distant future and for more and more jurisdictions.

SARCOPENIC OBESITY AS A BODY COMPOSITIONAL DISORDER

There is an increasing appreciation that not just fat distribution, but also body composition is an important set of concomitant predictors, along with body fatness, of longevity. It would be preferable to speak of body compositional disorders (BCD) rather than BMI in isolation or even ‘weight disorders’, given that the latter terminology is simple and explicable when it comes to the required ‘health literacy’.

There is a need to measure muscle, bone and other organ mass separately and collectively as health indices reflected in weight: and there is evidence that, for a given level of fatness, its health relevance is dependent on physical fitness. Reduced muscle mass or sarcopenia and muscle strength which are associated with ageing are themselves important predictors of morbidity and mortality. A skeletal muscle index, like the BMI could, therefore, be helpful in the evaluation of sarcopenia. This muscle phenomenon may occur in the presence of over fatness, a situation which may be referred to as sarcopenic obesity. To maintain healthy muscle mass and function might be considered ‘orthosarcal’, etymologically ‘correct flesh’.

In Asian populations, less muscle mass than in Europeans may be a factor in the expression of metabolic disease even when there is less body fat.

HOW MIGHT THE OBESE WITH CHRONIC DISEASE LIVE LONGER THAN THE LEAN?

There are at least two ways in which the obese with chronic disease live longer than the lean. The first is that the lean may be sarcopenic and more liable to shorter lives than the obese. Obesity per se is associated with more lean mass, both muscle and bone in healthy individuals and some of this body compositional advantage may carry over into the phase of chronic disease. In cardiac failure, the obese may have more cardiac muscle reserve. The second is that fat soluble pollutants, like certain endocrine disrupters, may be retained in fat tissue and, therefore, be less harmful than in lean individuals. This has been described for obese and non-obese people with diabetes.

LEAN BODY MASS AND MORTALITY

Few studies have investigated the association between lean body mass and mortality among the elderly. A longitudinal study among the elderly in Korea showed that a lean mass index was an independent predictor of 3-yr mortality. That study controlled for age, sex, hypertension, diabetes, and the presence of chronic disease, but not BMI. An unpublished study in Chinese has further demonstrated that a low skeletal muscle index predicts mortality risk, independent of BMI and other confounders. Therefore, aside from BMI, a lean body mass plays an important role in mortality risk among the elderly.

WEIGHT CHANGE AND MORTALITY AMONG THE ELDERLY

In the general population, weight reduction is beneficial for severely obese individuals. However, weight reduction among the elderly is not recommended. Compared to elderly individuals with a stable weight, weight loss is associated with a higher risk of mortality among elderly Chinese and Americans. Moreover, a reduction in appendicular or leg fat-free mass is the main predictor of disability among the elderly. Additional studies also show that both involuntary and voluntary (usually diet control) weight loss increases the risk of mortality among the elderly. Thus, weight loss in the elderly may lead to increased mortality, even if the weight is lost intentionally by diet. A loss of muscle mass often accompanies weight reduction, which may explain why elderly persons who lose weight have a higher mortality risk.
AGE (ESPECIALLY AGEING) AND OPTIMAL BMI (BEING HEAVIER)

BMI is not reliably predictive of excess mortality in the aged except below 25 and above 30 or even 35. Disability is also increased with BMIs below 18.5 and above 30. Physical activity and function are conjointly important in the risk presented by BMI to health outcomes in the aged. Weight management in the aged presents particular difficulty in the aged for various reasons, especially with reduced physical activity and oedematous conditions. But knowing its trajectory and what the body composition is will go a long way to aid the clinician who can then base decisions not only on the associations of BMI and mortality.

THOSE WITH CED (BMI <18.5) COST LESS AND DIE EARLIER

Pan et al find that at low BMIs, with chronic energy deficiency (CED), health care expenditure is least and, as is already known, this region of the J or U-shaped curve has a relatively higher mortality. This human tragedy remains a feature of global poverty and hunger. It is more poignant when those who smoke or have cancer at baseline are removed from this part of the analysis. They are likely to have secondarily low BMIs as opposed to a primary nutritional disorder. Notably, in those with BMI >18.5 it is inversely related to mortality from respiratory disease and senility.

Inasmuch as the problem of CED is one of sarcopenia, since with energy deficiency muscle is utilized, it can be found at any level of body fatness and this may relate to dietary quality. As well as to physical inactivity.

Fat is an essential and multifunctional tissue important for physical and mental health and for the integrity of body systems (eg, immune and endocrine) and organ function with which it is closely associated (eg, skeletal and cardiac muscle; perinephric and lymph node; on the portal circulation to liver from omental fat). Elders with CED, residual fat mass may be a survival factor since some remains with BMIs <18.5. The question is whether fat could or should not be mobilized in such states.

COMPETING RISKS FOR DYING AND QUALITY-OF-LIFE

The links between obesity and quality-of-life, which is partly a question of disability, and between obesity and mortality may not remain the same and may be diminishing as a secular trend. This may simply be that, while obesity presents risk, these risks may be mediated through correctable pathways to major outcomes like diabetes, cancer and cardiovascular disease or other risk domains, like smoking or physical inactivity and which may have been addressed. So the future burden of obesity-related disease, if its prevalence and costs continue to increase, will depend on whether obesity itself or other health risk factors dominate.

THE OVER-RIDING IMPORTANCE OF ECOSYSTEM AND PHYSICAL ACTIVITY

While BMI is a useful index of body fatness in sedentary populations, it does not take into adequate account the body compositional changes associated with physical fitness or other environmental inputs. The increasing health care costs, which pay for disability management and acute care to prolong life as BMI increases, may be addressed to some extent by striving for fitness and healthy body composition. Active and satisfying lives depend on the locality and household in which we live, work and recreate. For affordable and sustainable approaches to body composition, our ecosystems must be conducive (UN System, Ecosystem management manual).

REFERENCES

17. Lee DH, Lind L, Jacobs DR, Jr., Salihovic S, van Bavel B, Lind PM. Associations of persistent organic pollutants with...
29. Chang YH, Chen RCY, Lee MS, Wahlqvist ML. Increased medical costs in elders with the metabolic syndrome are most evident with hospitalization of men. Gender Medicine. 2012;doi:10.1016/j.genn.2012.08.005 [Epub ahead of print].
34. Hsu CC, Wahlqvist ML, Lee MS, Tsai HN. Incidence of dementia is increased in type 2 diabetes and reduced by the use of sulfonylureas and metformin. J Alzheimers Dis. 2011;24:485-93.
49. Woo J, Ho SC, Sham A. Longitudinal changes in body mass index and body composition over 3 years and relationship to health outcomes in Hong Kong Chinese age 70 and older. J Am Geriatr Soc. 2001;49:737-46.
Mini Review

Paradoxes with weight disorders for health systems

Mark L Wahlqvist MD (Adelaide & Uppsala), FRACP, FAFPHM1,2,3, Shao-Yuan Chuang PhD1

1Division of Preventive Medicine and Health Services Research, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan, ROC
2School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
3Monash Asia Institute, Monash University, Melbourne, Victoria, Australia

體重失調矛盾

身體質量指數(BMI)為公共衛生與臨床醫學中肥胖判定的常用依據。然而它的使用卻也造成一些矛盾及誤解，例如體組織失調(BCD)的判定爭論，特別是用在以肌肉質量為評估指標之肌少症的早期偵測並不適當。在生命週期中，身體組成會隨著性別、年齡與種族而有所差異，而身體組成異常疾病通常是導因於個人相關營養需求失調及慢性疾病。譬如在代謝異常的糖尿病患中，肌肉、脂肪甚至骨質的分布可能是影響其代謝異常發展的重要機轉之一。因此，理想的體脂肪量及分布與孩童的發展、母親健康及健康老化的機制密切相關。整體而言，肥胖所導致的經濟及社會成本是伴隨BMI的增加而提高，但BMI和死亡率卻是呈現J或是U型的關係。在慢性病患中，例如糖尿病、腎衰竭或是心衰竭，較多體脂肪的人可能有較低的死亡風險；可能是因為較肥胖者有較多的心肌維持生命或者因為脂肪細胞阻絕環境汙染因子對肌肉細胞的傷害。這些因素可能解釋健康照護系統中，體脂肪較高的老人，其存活率相對較高。因此，因果相關倒置的現象不應該被忽略。另一方面，熱量缺乏的幼童，可能在未獲得足夠能量前即死亡。在這樣的觀點中，人類比我們自己想像的還要脆弱。所幸，我們逐漸了解BMI及健康關係。

關鍵字：營養經濟、肥胖矛盾、內分泌干擾物、肌少症肥胖、orthosarcal (健康的肌肉)