Symposium 2

SY2-1

Institute Professor Emeritus, Massachusetts Institute of Technology and Senior Advisor, Food and Nutrition Program, United Nations University, Boston, MA, USA.

Nevin S. Scrimshaw

Growth is a sensitive indicator of the nutritional status of children and nutrient deficiencies are commonly reflected in impaired growth. Inadequate energy and protein intakes consistently cause growth impairment that is corrected by appropriate supplementation and often cognitive improvement can be demonstrated. This also true of micronutrient deficiencies to varying degrees. Severe iodine deficiency in pregnancy leads to cretinous dwarfism, but when less severe can still interfere with brain development in mid and late pregnancy. Essential fatty acids are also important for brain development and premature infants may not receive adequate amounts. Iron deficiency in infancy and early childhood also affects brain development at a critical time and in most studies of anemic child populations iron supplementation improves growth. There is increasing evidence that in some populations zinc deficiency is responsible for relative growth failure. Whether or not vitamin A directly affects growth, it does influence iron status. Adequate bone mass cannot be achieved without appropriate calcium and vitamin D intakes. B-vitamins have many functions essential to maintenance of cell function and their clinical deficiencies can affect any stage of development. Low birth weight at term, due primarily to maternal malnutrition, is closely associated with growth deficits at one year of age and both increase the occurrence of chronic degenerative diseases in later life.

SY2-2

Essential Fatty Acids in Early Life.

Ricardo Lavy MD PhD
Instituto de Nutricion y Tecnologia de los Alimentos INIFTA Universidad de Chile.

Essential fatty acids (EFAs) are structural components of all tissues and are indispensable for cell membrane synthesis, the brain, retina and other neural tissues are particularly rich in long-chain polyunsaturated fatty acids (LCPUFAs). These fatty acids serve as specific precursors for eicosanoids which regulate numerous cell and organ functions. Results from animal and recent human studies support the essential nature of E-3 and A-3 in addition to the well-established role of A-5 EFAs for humans, particularly in early life. The most significant effects relate to neural development and maturation of sensory systems. Recent studies using surrogate measures indicate that even premature infants are able to form arachidonic acid (AA) and docosahexaenoic acid (DHA) but that synthesis is extremely low in brain. n-6 fatty acids or fish and vegetable meals require normal brain development, turned and nervous system development. Regulation of gene expression by LCPUFAs occurs at the transcriptional level and may be modulated by nuclear transcription factors activated by fatty acids. These nuclear receptors are part of the nuclear hormone receptor family. DHA also has significant effects on phospholipid metabolism and maturation proteins involved in signal transduction proteins, including endothelin, end and gene development. Experimental studies have shown that dietary supplementation with marine oil or single cell oil (somes LCPUFAs) results in increased blood levels of DHA and AA, as well as an essential improvement in visual function in formula-fed infants with low intakes of n-3 fatty acids.

The main findings are that high sensitivity of retinal photoreceptors is significantly reduced in newborns with no fatty acid deficiency, that DHA significantly enhances generic visual sensitivity and negative feedback. To explore the possible effect of DHA on gene expression during human fetal and retinal maturation we compared mRNA expression from retinal explants with and without added DHA using gene microarray methodology. Total RNA was obtained on day 14 from fetal retina (14.18 weeks gestational age) in serum-free media with and without DHA. After cDNA was synthesized with labeled oligonucleotides by hybridized to the microarray. Fluorescent oligonucleotides were used to assess gene expression. Computer analysis of relative expression of 2,500 genes was performed. A number of expression >1.5-fold was considered in 8% of genes (i.e., several ribosomal proteins and GADD45). 6% of genes displayed a value <0.5 (i.e., human bone PA-5, cytoskeleton proteins, Plasminogen activator inhibitor 1, and 1b; the zero was >2.0 (related to fatty acid metabolism and regulation, PAF acetyl LPL, receptor and PAF receptor activation and promotion, transmission factors and mRNA, neurotransmitter receptors, and NMDA excitatory receptors. We conclude that DHA is a conditionally essential nutrient for adequate normal development in humans. The effect is modified not only by the known effects on maternal biochemical parameters, neurotransmitter content and the corresponding electrophysiological correlates but also by a modulating gene expression of the developing retina and brain.

(Provided by Catalina Pediatric Research Unit Children’s Scientific Council)
SY2-3

Carotenoid-rich Edible Oil – Its Potential Nutritional Impact

Dr Chu Sing, KOH MBA, Ph.D.

Head, Scientific & Technical Department
Malaysian Palm Oil Promotion Council
Kuala Lumpur, Malaysia

Red palm oil is characterized by its high content (500 ppm) of natural carotenoids (primarily alpha and beta-carotene) and Vitamin E (800 ppm), predominated as the tocotrienol isomers. These minor nutrients in red palm oil confer distinct and important physiological effects that are unlike other edible oils and fats. A large number of human clinical trials have shown that palm olein behaves as a neutral fat in its cholesterolemic response. Since the fatty acid composition of red palm oil mimics that of refined palm olein, which is rich in the monounsaturated oleic and saturated palmitic acids, similar effects on blood lipids and lipoproteins has been postulated. As a result, the fatty acids in red palm oil have a neutral effect on plasma total and LDL-cholesterol. In a rabbit atherosclerosis model study however, red palm oil resulted in a significantly lower atherogenic index scored as total plaque surface area than refined palm olein. This has been attributed to its content of carotenoids and tocotrienols and their abilities to act as potent natural antioxidants. The beneficial effects of tocotrienols on atherogenesis was also evident in ApoE knockout mice – lesion sizes were almost 98% smaller than those of control mice receiving a similar atherogenic diet minus the tocotrienols. Tocotrienols present in both refined and red palm oil have been demonstrated to have cholesterol-lowering properties mediated through their ability to regulate HMG-CoA reductase activity, a rate-limiting enzyme in cholesterol synthesis. In addition, tocotrienols inhibit the growth of human breast cancer cells in culture and reduce the progression of DMH induced colon carcinogenesis in rats. Similarly, the bouquet of carotenoids has been shown to have positive anti-cancer activities. Palm alpha and beta-carotene isolates were effective against the proliferation of a number of cancer cell cultures (liver, lung, skin). These beneficial health properties of red palm oil are considered an additional bonus to their currently well proven pro-vitamin A effects.

SY2-4

The expression of 25-hydroxyvitamin D-1 -hydroxylase and megalin in murine embryonic kidney.

Keiichi Ozono, MD, Masayo Yamagata, PhD, Yoshimi Michigami, MD, and Yoshiki Seino, MD, PhD.

Department of Environmental Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Osaka, and Department of Pediatrics, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan

Aim: Vitamin D is an essential nutrient for bone and calcium homeostasis. Vitamin D must be activated by hydroxylation of two sites to exhibit its biological function. The 25-hydroxyvitamin D-1 -hydroxylase (1 -hydroxylase) is a key enzyme to activate 25-hydroxyvitamin D in kidney whose cDNA and gene have been recently cloned. The vitamin D deficiency is often encountered clinically in breast-fed premature babies unless vitamin D, calcium and phosphorus are supplemented. It is necessary to examine the expression of 1 -hydroxylase in developing kidney to understand the physiological control of vitamin D metabolism.

Methods: First, the expression of 1 -hydroxylase, 24-hydroxylase and megalin in mouse developing kidney was investigated by reverse transcription-polymerase chain reaction (RT-PCR). The kidneys from mouse embryo at 11.5 to 17.5 day of gestation were explanted and placed in DMEM supplemented with 15% FCS. Then, either forskolin or 1,25-dihydroxyvitamin D3 was added to the culture media. 3-24 hr after the addition, total RNA was extracted from the kidney explants and used for RT-PCR. Next, the distribution of 1 -hydroxylase transcripts was examined by whole mount in situ hybridization using organ culture of metanephros taken from embryos at various stages and compared with that of 24-hydroxylase and megalin transcripts. The explants were fixed with 4% paraformaldehyde and whole mount in situ hybridization was performed using digoxigenin-labeled probe encoding entire coding region of each cDNA.

Results: The expression of 1 -hydroxylase and 24-hydroxylase was inducible in kidney explants from embryo at 13.5 to 17.5 day of gestation by the treatment with forskolin and 1,25-dihydroxyvitamin D3, respectively, in a dose- and time-dependent manner. These results indicate that the expression of 1 -hydroxylase and 24-hydroxylase starts after the tubulogenesis. The signal for the expression of either 1 -hydroxylase and 24-hydroxylase was detected in kidney explants after the simultaneous stimulation at 15.5 day of gestation. The distribution of signals was different between the two enzymes, although which portion of renal tubules expresses the transcripts of these hydroxylases has not been identified yet. The site of expression of both enzymes was restricted to epithelium of developing renal tubules. The pattern of megalin expression was similar to that of 1 -hydroxylase expression.

Conclusions: The expression of 1 -hydroxylase is induced in a distinct epithelium of renal tubules from that of 24-hydroxylase even at the early stage of kidney development prior to glomerulogenesis.
Symposium 3

SY3-1

The Asia Pacific Clinical Nutrition Society Okinawan Recommendation on Nutrition and Cardiovascular Disease in the Asia Pacific Region

Mark L. Wahlqvist AO, MD, FRACP

Professor of Medicine and Director of the Asia Pacific Health & Nutrition Centre, Monash University, Melbourne, Australia.

The emergence of cardiovascular disease of the ischaemic type in the Asia Pacific region has been against a different food cultural background and greater rate of economic development than has occurred in Western countries. For these reasons, the assumptions about prevention and management transfer from West to East may not always be valid, and the opportunities for cardio-protection, located in the Asia-Pacific, lost to the rest of the world.

In November 2000, a working party was convened in Okinawa by the Asia Pacific Clinical Nutrition Society to address these issues. Okinawa was chosen because of its exceptionally favourable cardiovascular disease and longevity profile. The recommendations of this round-table were:

1. The prevention of macrovascular disease (MVD) in the Asia-Pacific region should be based on FBDGs (Food Based Dietary Guidelines), which take account of sustainability, culture, social settings and broad health needs.
2. Emphasise a varied, nutritious food intake as the foremost dietary guideline.
3. Greater efforts should be made to identify culturally relevant cardioprotective foods and beverages.
4. A lifelong approach to CVD prevention, from conception to old age, is required.
5. Attention should be given to the role of food, and quality of life, in ageing populations.
6. Encourage food intake decisions which are inclusive of physical fitness, mental health and social activity.
7. Develop advocacy for health food policy and programs in relation to CVD in the Asia-Pacific region through inter-sectoral partnerships and good governance.

References: